ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.07304
  4. Cited By
A Holistic Approach to Unifying Automatic Concept Extraction and Concept
  Importance Estimation

A Holistic Approach to Unifying Automatic Concept Extraction and Concept Importance Estimation

11 June 2023
Thomas Fel
Victor Boutin
Mazda Moayeri
Rémi Cadène
Louis Bethune
Léo Andéol
Mathieu Chalvidal
Thomas Serre
    FAtt
ArXivPDFHTML

Papers citing "A Holistic Approach to Unifying Automatic Concept Extraction and Concept Importance Estimation"

47 / 47 papers shown
Title
The Dual Power of Interpretable Token Embeddings: Jailbreaking Attacks and Defenses for Diffusion Model Unlearning
The Dual Power of Interpretable Token Embeddings: Jailbreaking Attacks and Defenses for Diffusion Model Unlearning
Siyi Chen
Yimeng Zhang
Sijia Liu
Q. Qu
AAML
55
0
0
30 Apr 2025
Interpreting the Linear Structure of Vision-language Model Embedding Spaces
Interpreting the Linear Structure of Vision-language Model Embedding Spaces
Isabel Papadimitriou
Huangyuan Su
Thomas Fel
Naomi Saphra
Sham Kakade
Stephanie Gil
VLM
40
0
0
16 Apr 2025
Towards Spatially-Aware and Optimally Faithful Concept-Based Explanations
Towards Spatially-Aware and Optimally Faithful Concept-Based Explanations
Shubham Kumar
Dwip Dalal
Narendra Ahuja
14
0
0
15 Apr 2025
Towards Human-Understandable Multi-Dimensional Concept Discovery
Towards Human-Understandable Multi-Dimensional Concept Discovery
Arne Grobrugge
Niklas Kühl
G. Satzger
Philipp Spitzer
44
0
0
24 Mar 2025
Representational Similarity via Interpretable Visual Concepts
Representational Similarity via Interpretable Visual Concepts
Neehar Kondapaneni
Oisin Mac Aodha
Pietro Perona
DRL
65
0
0
19 Mar 2025
CoE: Chain-of-Explanation via Automatic Visual Concept Circuit Description and Polysemanticity Quantification
CoE: Chain-of-Explanation via Automatic Visual Concept Circuit Description and Polysemanticity Quantification
Wenlong Yu
Qilong Wang
Chuang Liu
Dong Li
Q. Hu
LRM
58
0
0
19 Mar 2025
Intra-neuronal attention within language models Relationships between activation and semantics
Intra-neuronal attention within language models Relationships between activation and semantics
Michael Pichat
William Pogrund
Paloma Pichat
Armanouche Gasparian
Samuel Demarchi
Corbet Alois Georgeon
Michael Veillet-Guillem
MILM
35
0
0
17 Mar 2025
Escaping Plato's Cave: Robust Conceptual Reasoning through Interpretable 3D Neural Object Volumes
Escaping Plato's Cave: Robust Conceptual Reasoning through Interpretable 3D Neural Object Volumes
Nhi Pham
Bernt Schiele
Adam Kortylewski
Jonas Fischer
46
0
0
17 Mar 2025
Conceptualizing Uncertainty
Isaac Roberts
Alexander Schulz
Sarah Schroeder
Fabian Hinder
Barbara Hammer
UD
67
0
0
05 Mar 2025
Synthetic Categorical Restructuring large Or How AIs Gradually Extract Efficient Regularities from Their Experience of the World
Michael Pichat
William Pogrund
Paloma Pichat
Armanouche Gasparian
Samuel Demarchi
Martin Corbet
Alois Georgeon
Theo Dasilva
Michael Veillet-Guillem
41
1
0
25 Feb 2025
Universal Sparse Autoencoders: Interpretable Cross-Model Concept Alignment
Universal Sparse Autoencoders: Interpretable Cross-Model Concept Alignment
Harrish Thasarathan
Julian Forsyth
Thomas Fel
M. Kowal
Konstantinos G. Derpanis
91
7
0
06 Feb 2025
COMIX: Compositional Explanations using Prototypes
COMIX: Compositional Explanations using Prototypes
S. Sivaprasad
D. Kangin
Plamen Angelov
Mario Fritz
49
0
0
10 Jan 2025
ConSim: Measuring Concept-Based Explanations' Effectiveness with Automated Simulatability
ConSim: Measuring Concept-Based Explanations' Effectiveness with Automated Simulatability
Antonin Poché
Alon Jacovi
Agustin Picard
Victor Boutin
Fanny Jourdan
31
2
0
10 Jan 2025
Analyzing Fine-tuning Representation Shift for Multimodal LLMs Steering alignment
Pegah Khayatan
Mustafa Shukor
Jayneel Parekh
Matthieu Cord
LLMSV
38
1
0
06 Jan 2025
Explainable and Interpretable Multimodal Large Language Models: A
  Comprehensive Survey
Explainable and Interpretable Multimodal Large Language Models: A Comprehensive Survey
Yunkai Dang
Kaichen Huang
Jiahao Huo
Yibo Yan
S. Huang
...
Kun Wang
Yong Liu
Jing Shao
Hui Xiong
Xuming Hu
LRM
96
14
0
03 Dec 2024
Explaining the Impact of Training on Vision Models via Activation Clustering
Explaining the Impact of Training on Vision Models via Activation Clustering
Ahcène Boubekki
Samuel G. Fadel
Sebastian Mair
89
0
0
29 Nov 2024
GIFT: A Framework for Global Interpretable Faithful Textual Explanations of Vision Classifiers
GIFT: A Framework for Global Interpretable Faithful Textual Explanations of Vision Classifiers
Éloi Zablocki
Valentin Gerard
Amaia Cardiel
Eric Gaussier
Matthieu Cord
Eduardo Valle
66
0
0
23 Nov 2024
Towards Utilising a Range of Neural Activations for Comprehending
  Representational Associations
Towards Utilising a Range of Neural Activations for Comprehending Representational Associations
Laura O'Mahony
Nikola S. Nikolov
David JP O'Sullivan
28
0
0
15 Nov 2024
Local vs distributed representations: What is the right basis for
  interpretability?
Local vs distributed representations: What is the right basis for interpretability?
Julien Colin
L. Goetschalckx
Thomas Fel
Victor Boutin
Jay Gopal
Thomas Serre
Nuria Oliver
HAI
16
2
0
06 Nov 2024
ConLUX: Concept-Based Local Unified Explanations
ConLUX: Concept-Based Local Unified Explanations
Junhao Liu
Haonan Yu
Xin Zhang
FAtt
LRM
21
0
0
16 Oct 2024
One Wave to Explain Them All: A Unifying Perspective on Post-hoc
  Explainability
One Wave to Explain Them All: A Unifying Perspective on Post-hoc Explainability
Gabriel Kasmi
Amandine Brunetto
Thomas Fel
Jayneel Parekh
AAML
FAtt
19
0
0
02 Oct 2024
Concept-Based Explanations in Computer Vision: Where Are We and Where
  Could We Go?
Concept-Based Explanations in Computer Vision: Where Are We and Where Could We Go?
Jae Hee Lee
Georgii Mikriukov
Gesina Schwalbe
Stefan Wermter
D. Wolter
48
2
0
20 Sep 2024
Trustworthy Conceptual Explanations for Neural Networks in Robot
  Decision-Making
Trustworthy Conceptual Explanations for Neural Networks in Robot Decision-Making
Som Sagar
Aditya Taparia
Harsh Mankodiya
Pranav M Bidare
Yifan Zhou
Ransalu Senanayake
FAtt
23
0
0
16 Sep 2024
Decompose the model: Mechanistic interpretability in image models with
  Generalized Integrated Gradients (GIG)
Decompose the model: Mechanistic interpretability in image models with Generalized Integrated Gradients (GIG)
Yearim Kim
Sangyu Han
Sangbum Han
Nojun Kwak
40
0
0
03 Sep 2024
Explainable Concept Generation through Vision-Language Preference
  Learning
Explainable Concept Generation through Vision-Language Preference Learning
Aditya Taparia
Som Sagar
Ransalu Senanayake
FAtt
21
2
0
24 Aug 2024
Pruning By Explaining Revisited: Optimizing Attribution Methods to Prune
  CNNs and Transformers
Pruning By Explaining Revisited: Optimizing Attribution Methods to Prune CNNs and Transformers
Sayed Mohammad Vakilzadeh Hatefi
Maximilian Dreyer
Reduan Achtibat
Thomas Wiegand
Wojciech Samek
Sebastian Lapuschkin
ViT
14
1
0
22 Aug 2024
Understanding Visual Feature Reliance through the Lens of Complexity
Understanding Visual Feature Reliance through the Lens of Complexity
Thomas Fel
Louis Bethune
Andrew Kyle Lampinen
Thomas Serre
Katherine Hermann
FAtt
CoGe
17
6
0
08 Jul 2024
Concept Bottleneck Models Without Predefined Concepts
Concept Bottleneck Models Without Predefined Concepts
Simon Schrodi
Julian Schur
Max Argus
Thomas Brox
20
9
0
04 Jul 2024
Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations
  for Vision Foundation Models
Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations for Vision Foundation Models
Hengyi Wang
Shiwei Tan
Hao Wang
BDL
27
6
0
18 Jun 2024
Concept-skill Transferability-based Data Selection for Large
  Vision-Language Models
Concept-skill Transferability-based Data Selection for Large Vision-Language Models
Jaewoo Lee
Boyang Li
Sung Ju Hwang
VLM
33
8
0
16 Jun 2024
A Concept-Based Explainability Framework for Large Multimodal Models
A Concept-Based Explainability Framework for Large Multimodal Models
Jayneel Parekh
Pegah Khayatan
Mustafa Shukor
A. Newson
Matthieu Cord
19
16
0
12 Jun 2024
Understanding Inhibition Through Maximally Tense Images
Understanding Inhibition Through Maximally Tense Images
Chris Hamblin
Srijani Saha
Talia Konkle
George Alvarez
FAtt
19
0
0
08 Jun 2024
DISCRET: Synthesizing Faithful Explanations For Treatment Effect
  Estimation
DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation
Yinjun Wu
Mayank Keoliya
Kan Chen
Neelay Velingker
Ziyang Li
E. Getzen
Qi Long
Mayur Naik
Ravi B. Parikh
Eric Wong
27
1
0
02 Jun 2024
Reactive Model Correction: Mitigating Harm to Task-Relevant Features via
  Conditional Bias Suppression
Reactive Model Correction: Mitigating Harm to Task-Relevant Features via Conditional Bias Suppression
Dilyara Bareeva
Maximilian Dreyer
Frederik Pahde
Wojciech Samek
Sebastian Lapuschkin
KELM
58
1
0
15 Apr 2024
WWW: A Unified Framework for Explaining What, Where and Why of Neural
  Networks by Interpretation of Neuron Concepts
WWW: A Unified Framework for Explaining What, Where and Why of Neural Networks by Interpretation of Neuron Concepts
Yong Hyun Ahn
Hyeon Bae Kim
Seong Tae Kim
14
4
0
29 Feb 2024
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE)
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE)
Usha Bhalla
Alexander X. Oesterling
Suraj Srinivas
Flavio du Pin Calmon
Himabindu Lakkaraju
21
35
0
16 Feb 2024
Understanding Video Transformers via Universal Concept Discovery
Understanding Video Transformers via Universal Concept Discovery
M. Kowal
Achal Dave
Rares Ambrus
Adrien Gaidon
Konstantinos G. Derpanis
P. Tokmakov
ViT
27
2
0
19 Jan 2024
Understanding the (Extra-)Ordinary: Validating Deep Model Decisions with
  Prototypical Concept-based Explanations
Understanding the (Extra-)Ordinary: Validating Deep Model Decisions with Prototypical Concept-based Explanations
Maximilian Dreyer
Reduan Achtibat
Wojciech Samek
Sebastian Lapuschkin
27
10
0
28 Nov 2023
On the Foundations of Shortcut Learning
On the Foundations of Shortcut Learning
Katherine Hermann
Hossein Mobahi
Thomas Fel
M. C. Mozer
VLM
17
25
0
24 Oct 2023
Interpretability is in the Mind of the Beholder: A Causal Framework for
  Human-interpretable Representation Learning
Interpretability is in the Mind of the Beholder: A Causal Framework for Human-interpretable Representation Learning
Emanuele Marconato
Andrea Passerini
Stefano Teso
4
13
0
14 Sep 2023
The Hidden Language of Diffusion Models
The Hidden Language of Diffusion Models
Hila Chefer
Oran Lang
Mor Geva
Volodymyr Polosukhin
Assaf Shocher
Michal Irani
Inbar Mosseri
Lior Wolf
DiffM
20
26
0
01 Jun 2023
Quantifying and Learning Static vs. Dynamic Information in Deep
  Spatiotemporal Networks
Quantifying and Learning Static vs. Dynamic Information in Deep Spatiotemporal Networks
M. Kowal
Mennatullah Siam
Md. Amirul Islam
Neil D. B. Bruce
Richard P. Wildes
Konstantinos G. Derpanis
FAtt
6
3
0
03 Nov 2022
Toy Models of Superposition
Toy Models of Superposition
Nelson Elhage
Tristan Hume
Catherine Olsson
Nicholas Schiefer
T. Henighan
...
Sam McCandlish
Jared Kaplan
Dario Amodei
Martin Wattenberg
C. Olah
AAML
MILM
117
314
0
21 Sep 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
58
112
0
06 Dec 2021
Look at the Variance! Efficient Black-box Explanations with Sobol-based
  Sensitivity Analysis
Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis
Thomas Fel
Rémi Cadène
Mathieu Chalvidal
Matthieu Cord
David Vigouroux
Thomas Serre
MLAU
FAtt
AAML
109
57
0
07 Nov 2021
Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
  Goals of Human Trust in AI
Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI
Alon Jacovi
Ana Marasović
Tim Miller
Yoav Goldberg
241
417
0
15 Oct 2020
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,658
0
28 Feb 2017
1