Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.01379
Cited By
Shifting Attention to Relevance: Towards the Predictive Uncertainty Quantification of Free-Form Large Language Models
3 July 2023
Jinhao Duan
Hao-Ran Cheng
Shiqi Wang
Alex Zavalny
Chenan Wang
Renjing Xu
B. Kailkhura
Kaidi Xu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Shifting Attention to Relevance: Towards the Predictive Uncertainty Quantification of Free-Form Large Language Models"
14 / 14 papers shown
Title
Attention Mechanisms Perspective: Exploring LLM Processing of Graph-Structured Data
Zhong Guan
Likang Wu
Hongke Zhao
Ming He
Jianpin Fan
GNN
25
0
0
04 May 2025
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Toghrul Abbasli
Kentaroh Toyoda
Yuan Wang
Leon Witt
Muhammad Asif Ali
Yukai Miao
Dan Li
Qingsong Wei
UQCV
85
0
0
25 Apr 2025
Calibrating Verbal Uncertainty as a Linear Feature to Reduce Hallucinations
Ziwei Ji
L. Yu
Yeskendir Koishekenov
Yejin Bang
Anthony Hartshorn
Alan Schelten
Cheng Zhang
Pascale Fung
Nicola Cancedda
46
1
0
18 Mar 2025
TruthPrInt: Mitigating LVLM Object Hallucination Via Latent Truthful-Guided Pre-Intervention
Jinhao Duan
Fei Kong
Hao-Ran Cheng
James Diffenderfer
B. Kailkhura
Lichao Sun
Xiaofeng Zhu
Xiaoshuang Shi
Kaidi Xu
89
0
0
13 Mar 2025
Rewarding Doubt: A Reinforcement Learning Approach to Confidence Calibration of Large Language Models
Paul Stangel
D. Bani-Harouni
Chantal Pellegrini
Ege Ozsoy
Kamilia Zaripova
Matthias Keicher
Nassir Navab
29
1
0
04 Mar 2025
Integrative Decoding: Improve Factuality via Implicit Self-consistency
Yi Cheng
Xiao Liang
Yeyun Gong
Wen Xiao
Song Wang
...
Wenjie Li
Jian Jiao
Qi Chen
Peng Cheng
Wayne Xiong
HILM
52
1
0
02 Oct 2024
Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph
Roman Vashurin
Ekaterina Fadeeva
Artem Vazhentsev
Akim Tsvigun
Daniil Vasilev
...
Timothy Baldwin
Timothy Baldwin
Maxim Panov
Artem Shelmanov
Artem Shelmanov
HILM
64
8
0
21 Jun 2024
Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression
Junyuan Hong
Jinhao Duan
Chenhui Zhang
Zhangheng Li
Chulin Xie
...
B. Kailkhura
Dan Hendrycks
Dawn Song
Zhangyang Wang
Bo-wen Li
34
24
0
18 Mar 2024
Exploring Predictive Uncertainty and Calibration in NLP: A Study on the Impact of Method & Data Scarcity
Dennis Ulmer
J. Frellsen
Christian Hardmeier
174
22
0
20 Oct 2022
Uncertainty Quantification with Pre-trained Language Models: A Large-Scale Empirical Analysis
Yuxin Xiao
Paul Pu Liang
Umang Bhatt
W. Neiswanger
Ruslan Salakhutdinov
Louis-Philippe Morency
173
86
0
10 Oct 2022
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
303
11,881
0
04 Mar 2022
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
195
81
0
16 Feb 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
1