Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.03217
Cited By
Quantification of Uncertainty with Adversarial Models
6 July 2023
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
G. Klambauer
Sepp Hochreiter
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Quantification of Uncertainty with Adversarial Models"
18 / 18 papers shown
Title
Feature Fitted Online Conformal Prediction for Deep Time Series Forecasting Model
Xiannan Huang
Shuhan Qiu
AI4TS
14
0
0
13 May 2025
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
50
0
0
04 May 2025
Adversarial Examples in Environment Perception for Automated Driving (Review)
Jun Yan
Huilin Yin
AAML
34
0
0
11 Apr 2025
The Disparate Benefits of Deep Ensembles
Kajetan Schweighofer
Adrián Arnaiz-Rodríguez
Sepp Hochreiter
Nuria Oliver
FedML
18
1
0
17 Oct 2024
Probabilistic Degeneracy Detection for Point-to-Plane Error Minimization
Johan Hatleskog
Kostas Alexis
3DPC
30
0
0
14 Oct 2024
PH-Dropout: Practical Epistemic Uncertainty Quantification for View Synthesis
Chuanhao Sun
Thanos Triantafyllou
Anthos Makris
Maja Drmač
Kai Xu
Luo Mai
Mahesh Marina
28
0
0
07 Oct 2024
Achieving Well-Informed Decision-Making in Drug Discovery: A Comprehensive Calibration Study using Neural Network-Based Structure-Activity Models
Hannah Rosa Friesacher
O. Engkvist
Lewis H. Mervin
Yves Moreau
Adam Arany
24
0
0
19 Jul 2024
Semantically Diverse Language Generation for Uncertainty Estimation in Language Models
L. Aichberger
Kajetan Schweighofer
Mykyta Ielanskyi
Sepp Hochreiter
HILM
23
10
0
06 Jun 2024
Epistemic Uncertainty Quantification For Pre-trained Neural Network
Hanjing Wang
Qiang Ji
UQCV
20
2
0
15 Apr 2024
Out-of-Distribution Data: An Acquaintance of Adversarial Examples -- A Survey
Naveen Karunanayake
Ravin Gunawardena
Suranga Seneviratne
Sanjay Chawla
OOD
35
5
0
08 Apr 2024
Introducing an Improved Information-Theoretic Measure of Predictive Uncertainty
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
Sepp Hochreiter
8
11
0
14 Nov 2023
Laplacian Segmentation Networks: Improved Epistemic Uncertainty from Spatial Aleatoric Uncertainty
Kilian Zepf
Selma Wanna
M. Miani
Juston Moore
J. Frellsen
Søren Hauberg
Aasa Feragen
Frederik Warburg
UQCV
13
4
0
23 Mar 2023
Variational Neural Networks
Illia Oleksiienko
D. Tran
Alexandros Iosifidis
BDL
UQCV
21
8
0
04 Jul 2022
Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations
Oskar Kviman
Harald Melin
Hazal Koptagel
Victor Elvira
J. Lagergren
DRL
63
17
0
22 Feb 2022
Which Shortcut Cues Will DNNs Choose? A Study from the Parameter-Space Perspective
Luca Scimeca
Seong Joon Oh
Sanghyuk Chun
Michael Poli
Sangdoo Yun
OOD
374
49
0
06 Oct 2021
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
60
171
0
08 Jul 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
1