ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.09929
  4. Cited By
Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation

Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation

19 July 2023
Mochu Xiang
Jing Zhang
Nick Barnes
Yuchao Dai
    UQCV
ArXivPDFHTML

Papers citing "Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation"

8 / 8 papers shown
Title
On the Importance of Gradients for Detecting Distributional Shifts in
  the Wild
On the Importance of Gradients for Detecting Distributional Shifts in the Wild
Rui Huang
Andrew Geng
Yixuan Li
175
328
0
01 Oct 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
200
81
0
16 Feb 2021
Dense Hybrid Recurrent Multi-view Stereo Net with Dynamic Consistency
  Checking
Dense Hybrid Recurrent Multi-view Stereo Net with Dynamic Consistency Checking
Jianfeng Yan
Zizhuang Wei
Hongwei Yi
Mingyu Ding
Runze Zhang
Yisong Chen
Guoping Wang
Yu-Wing Tai
3DV
69
150
0
21 Jul 2020
Deep Ordinal Regression Network for Monocular Depth Estimation
Deep Ordinal Regression Network for Monocular Depth Estimation
Huan Fu
Mingming Gong
Chaohui Wang
Kayhan Batmanghelich
Dacheng Tao
MDE
180
1,707
0
06 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,660
0
05 Dec 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
247
36,356
0
25 Aug 2016
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
197
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
252
9,134
0
06 Jun 2015
1