ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.11334
  4. Cited By
Improving Transferability of Adversarial Examples via Bayesian Attacks

Improving Transferability of Adversarial Examples via Bayesian Attacks

21 July 2023
Qizhang Li
Yiwen Guo
Xiaochen Yang
W. Zuo
Hao Chen
    AAML
    BDL
ArXivPDFHTML

Papers citing "Improving Transferability of Adversarial Examples via Bayesian Attacks"

13 / 13 papers shown
Title
Improved Generation of Adversarial Examples Against Safety-aligned LLMs
Improved Generation of Adversarial Examples Against Safety-aligned LLMs
Qizhang Li
Yiwen Guo
Wangmeng Zuo
Hao Chen
AAML
SILM
21
5
0
28 May 2024
SoK: Analyzing Adversarial Examples: A Framework to Study Adversary
  Knowledge
SoK: Analyzing Adversarial Examples: A Framework to Study Adversary Knowledge
L. Fenaux
Florian Kerschbaum
AAML
29
0
0
22 Feb 2024
An Intermediate-level Attack Framework on The Basis of Linear Regression
An Intermediate-level Attack Framework on The Basis of Linear Regression
Yiwen Guo
Qizhang Li
W. Zuo
Hao Chen
26
13
0
21 Mar 2022
Are Transformers More Robust Than CNNs?
Are Transformers More Robust Than CNNs?
Yutong Bai
Jieru Mei
Alan Yuille
Cihang Xie
ViT
AAML
181
257
0
10 Nov 2021
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
239
2,600
0
04 May 2021
Admix: Enhancing the Transferability of Adversarial Attacks
Admix: Enhancing the Transferability of Adversarial Attacks
Xiaosen Wang
Xu He
Jingdong Wang
Kun He
AAML
68
192
0
31 Jan 2021
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
217
675
0
19 Oct 2020
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
266
0
13 Jun 2018
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
268
10,214
0
16 Nov 2016
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
256
3,108
0
04 Nov 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
247
36,356
0
25 Aug 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
282
39,190
0
01 Sep 2014
1