Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2401.14166
Cited By
BayesPrompt: Prompting Large-Scale Pre-Trained Language Models on Few-shot Inference via Debiased Domain Abstraction
25 January 2024
Jiangmeng Li
Fei Song
Yifan Jin
Wenwen Qiang
Changwen Zheng
Fuchun Sun
Hui Xiong
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"BayesPrompt: Prompting Large-Scale Pre-Trained Language Models on Few-shot Inference via Debiased Domain Abstraction"
9 / 9 papers shown
Title
XPrompt: Exploring the Extreme of Prompt Tuning
Fang Ma
Chen Zhang
Lei Ren
Jingang Wang
Qifan Wang
Wei Yu Wu
Xiaojun Quan
Dawei Song
VLM
101
35
0
10 Oct 2022
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Jason W. Wei
Xuezhi Wang
Dale Schuurmans
Maarten Bosma
Brian Ichter
F. Xia
Ed H. Chi
Quoc Le
Denny Zhou
LM&Ro
LRM
AI4CE
ReLM
315
8,261
0
28 Jan 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
228
780
0
14 Oct 2021
Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity
Yao Lu
Max Bartolo
Alastair Moore
Sebastian Riedel
Pontus Stenetorp
AILaw
LRM
274
882
0
18 Apr 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
275
3,784
0
18 Apr 2021
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
238
1,898
0
31 Dec 2020
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
Timo Schick
Hinrich Schütze
248
1,382
0
21 Jan 2020
Knowledge Enhanced Contextual Word Representations
Matthew E. Peters
Mark Neumann
IV RobertL.Logan
Roy Schwartz
Vidur Joshi
Sameer Singh
Noah A. Smith
213
651
0
09 Sep 2019
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
185
495
0
11 Jun 2018
1