ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.08671
  4. Cited By
Are Semi-Dense Detector-Free Methods Good at Matching Local Features?

Are Semi-Dense Detector-Free Methods Good at Matching Local Features?

13 February 2024
Matthieu Vilain
Rémi Giraud
Hugo Germain
Guillaume Bourmaud
ArXivPDFHTML

Papers citing "Are Semi-Dense Detector-Free Methods Good at Matching Local Features?"

5 / 5 papers shown
Title
DKM: Dense Kernelized Feature Matching for Geometry Estimation
DKM: Dense Kernelized Feature Matching for Geometry Estimation
Johan Edstedt
Ioannis Athanasiadis
Mårten Wadenbäck
M. Felsberg
3DV
MDE
27
114
0
01 Feb 2022
QuadTree Attention for Vision Transformers
QuadTree Attention for Vision Transformers
Shitao Tang
Jiahui Zhang
Siyu Zhu
Ping Tan
ViT
148
154
0
08 Jan 2022
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction
  without Convolutions
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
263
3,538
0
24 Feb 2021
Learning Accurate Dense Correspondences and When to Trust Them
Learning Accurate Dense Correspondences and When to Trust Them
Prune Truong
Martin Danelljan
Luc Van Gool
Radu Timofte
3DH
3DPC
64
125
0
05 Jan 2021
Feature Pyramid Networks for Object Detection
Feature Pyramid Networks for Object Detection
Tsung-Yi Lin
Piotr Dollár
Ross B. Girshick
Kaiming He
Bharath Hariharan
Serge J. Belongie
ObjD
166
21,643
0
09 Dec 2016
1