ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.10853
  4. Cited By
The Future of Large Language Model Pre-training is Federated

The Future of Large Language Model Pre-training is Federated

17 May 2024
Lorenzo Sani
Alexandru Iacob
Zeyu Cao
Bill Marino
Yan Gao
Tomas Paulik
Wanru Zhao
William F. Shen
Preslav Aleksandrov
Xinchi Qiu
Nicholas D. Lane
    AI4CE
ArXivPDFHTML

Papers citing "The Future of Large Language Model Pre-training is Federated"

11 / 11 papers shown
Title
DEPT: Decoupled Embeddings for Pre-training Language Models
DEPT: Decoupled Embeddings for Pre-training Language Models
Alex Iacob
Lorenzo Sani
Meghdad Kurmanji
William F. Shen
Xinchi Qiu
Dongqi Cai
Yan Gao
Nicholas D. Lane
VLM
47
0
0
07 Oct 2024
Securing Large Language Models: Threats, Vulnerabilities and Responsible
  Practices
Securing Large Language Models: Threats, Vulnerabilities and Responsible Practices
Sara Abdali
Richard Anarfi
C. Barberan
Jia He
PILM
58
22
0
19 Mar 2024
DiLoCo: Distributed Low-Communication Training of Language Models
DiLoCo: Distributed Low-Communication Training of Language Models
Arthur Douillard
Qixuang Feng
Andrei A. Rusu
Rachita Chhaparia
Yani Donchev
A. Kuncoro
MarcÁurelio Ranzato
Arthur Szlam
Jiajun Shen
51
31
0
14 Nov 2023
Trusted Source Alignment in Large Language Models
Trusted Source Alignment in Large Language Models
Vasilisa Bashlovkina
Zhaobin Kuang
Riley Matthews
Edward Clifford
Yennie Jun
William W. Cohen
Simon Baumgartner
HILM
31
2
0
12 Nov 2023
Dataset Geography: Mapping Language Data to Language Users
Dataset Geography: Mapping Language Data to Language Users
Fahim Faisal
Yinkai Wang
Antonios Anastasopoulos
54
23
0
07 Dec 2021
Train Short, Test Long: Attention with Linear Biases Enables Input
  Length Extrapolation
Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation
Ofir Press
Noah A. Smith
M. Lewis
237
690
0
27 Aug 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
278
3,784
0
18 Apr 2021
ZeRO-Offload: Democratizing Billion-Scale Model Training
ZeRO-Offload: Democratizing Billion-Scale Model Training
Jie Ren
Samyam Rajbhandari
Reza Yazdani Aminabadi
Olatunji Ruwase
Shuangyang Yang
Minjia Zhang
Dong Li
Yuxiong He
MoE
157
399
0
18 Jan 2021
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Leo Gao
Stella Biderman
Sid Black
Laurence Golding
Travis Hoppe
...
Horace He
Anish Thite
Noa Nabeshima
Shawn Presser
Connor Leahy
AIMat
245
1,977
0
31 Dec 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
220
4,424
0
23 Jan 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
243
1,791
0
17 Sep 2019
1