ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.19385
  4. Cited By
Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing
v1v2v3v4v5 (latest)

Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing

25 March 2025
Jaihoon Kim
Taehoon Yoon
Jisung Hwang
Minhyuk Sung
    DiffM
ArXiv (abs)PDFHTMLHuggingFace (34 upvotes)Github (24539★)

Papers citing "Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing"

21 / 71 papers shown
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
DiffM
1.1K
562
0
15 Mar 2023
Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set
  Object Detection
Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object DetectionEuropean Conference on Computer Vision (ECCV), 2023
Shilong Liu
Zhaoyang Zeng
Tianhe Ren
Feng Li
Hao Zhang
...
Chun-yue Li
Jianwei Yang
Hang Su
Jun Zhu
Lei Zhang
ObjD
775
3,281
0
09 Mar 2023
Universal Guidance for Diffusion Models
Universal Guidance for Diffusion Models
Arpit Bansal
Hong-Min Chu
Avi Schwarzschild
Soumyadip Sengupta
Micah Goldblum
Jonas Geiping
Tom Goldstein
VLM
265
376
0
14 Feb 2023
Flow Matching for Generative Modeling
Flow Matching for Generative ModelingInternational Conference on Learning Representations (ICLR), 2022
Y. Lipman
Ricky T. Q. Chen
Heli Ben-Hamu
Maximilian Nickel
Matt Le
OOD
1.1K
2,869
0
06 Oct 2022
Diffusion Posterior Sampling for General Noisy Inverse Problems
Diffusion Posterior Sampling for General Noisy Inverse ProblemsInternational Conference on Learning Representations (ICLR), 2022
Hyungjin Chung
Jeongsol Kim
Michael T. McCann
M. Klasky
J. C. Ye
DiffM
634
1,242
0
29 Sep 2022
Flow Straight and Fast: Learning to Generate and Transfer Data with
  Rectified Flow
Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified FlowInternational Conference on Learning Representations (ICLR), 2022
Xingchao Liu
Chengyue Gong
Qiang Liu
OOD
1.1K
2,003
0
07 Sep 2022
DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling
  in Around 10 Steps
DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 StepsNeural Information Processing Systems (NeurIPS), 2022
Cheng Lu
Yuhao Zhou
Fan Bao
Jianfei Chen
Chongxuan Li
Jun Zhu
DiffM
750
1,956
0
02 Jun 2022
On Reinforcement Learning and Distribution Matching for Fine-Tuning
  Language Models with no Catastrophic Forgetting
On Reinforcement Learning and Distribution Matching for Fine-Tuning Language Models with no Catastrophic ForgettingNeural Information Processing Systems (NeurIPS), 2022
Tomasz Korbak
Hady ElSahar
Germán Kruszewski
Marc Dymetman
CLL
296
75
0
01 Jun 2022
Elucidating the Design Space of Diffusion-Based Generative Models
Elucidating the Design Space of Diffusion-Based Generative ModelsNeural Information Processing Systems (NeurIPS), 2022
Tero Karras
M. Aittala
Timo Aila
S. Laine
DiffM
909
2,746
0
01 Jun 2022
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion ModelsComputer Vision and Pattern Recognition (CVPR), 2021
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
DiffM
3.0K
21,096
0
20 Dec 2021
SDEdit: Guided Image Synthesis and Editing with Stochastic Differential
  Equations
SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations
Chenlin Meng
Yutong He
Yang Song
Jiaming Song
Jiajun Wu
Jun-Yan Zhu
Stefano Ermon
DiffM
588
1,907
0
02 Aug 2021
Variational Diffusion Models
Variational Diffusion Models
Diederik P. Kingma
Tim Salimans
Ben Poole
Jonathan Ho
DiffM
880
1,353
0
01 Jul 2021
Diffusion Models Beat GANs on Image Synthesis
Diffusion Models Beat GANs on Image SynthesisNeural Information Processing Systems (NeurIPS), 2021
Prafulla Dhariwal
Alex Nichol
3.0K
10,306
0
11 May 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language SupervisionInternational Conference on Machine Learning (ICML), 2021
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIPVLM
2.0K
41,259
0
26 Feb 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential EquationsInternational Conference on Learning Representations (ICLR), 2020
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
2.2K
8,890
0
26 Nov 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit ModelsInternational Conference on Learning Representations (ICLR), 2020
Jiaming Song
Chenlin Meng
Stefano Ermon
VLMDiffM
1.5K
10,230
0
06 Oct 2020
Learning to summarize from human feedback
Learning to summarize from human feedbackNeural Information Processing Systems (NeurIPS), 2020
Nisan Stiennon
Long Ouyang
Jeff Wu
Daniel M. Ziegler
Ryan J. Lowe
Chelsea Voss
Alec Radford
Dario Amodei
Paul Christiano
ALM
865
2,739
0
02 Sep 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
5.0K
25,864
0
19 Jun 2020
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
  Transformer
Exploring the Limits of Transfer Learning with a Unified Text-to-Text TransformerJournal of machine learning research (JMLR), 2019
Colin Raffel
Noam M. Shazeer
Adam Roberts
Katherine Lee
Sharan Narang
Michael Matena
Yanqi Zhou
Wei Li
Peter J. Liu
AIMat
1.5K
23,849
0
23 Oct 2019
Reinforcement Learning and Control as Probabilistic Inference: Tutorial
  and Review
Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review
Sergey Levine
AI4CEBDL
400
764
0
02 May 2018
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDaDiffM
1.5K
8,853
0
12 Mar 2015
Previous
12