ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1109.2618
  4. Cited By
Fast and Accurate Modeling of Molecular Atomization Energies with
  Machine Learning

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

12 September 2011
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning"

50 / 268 papers shown
Title
Higher Order Gauge Equivariant CNNs on Riemannian Manifolds and
  Applications
Higher Order Gauge Equivariant CNNs on Riemannian Manifolds and Applications
Gianfranco Cortés
Yue Yu
R. Chen
Melissa S. Armstrong
David E Vaillancourt
B. Vemuri
89
1
0
26 May 2023
Mol-PECO: a deep learning model to predict human olfactory perception
  from molecular structures
Mol-PECO: a deep learning model to predict human olfactory perception from molecular structures
Mengji Zhang
Yusuke Hiki
Akira Funahashi
Tetsuya J. Kobayashi
31
1
0
21 May 2023
Chemellia: An Ecosystem for Atomistic Scientific Machine Learning
Chemellia: An Ecosystem for Atomistic Scientific Machine Learning
Anant Thazhemadam
Dhairya Gandhi
V. Viswanathan
Rachel C. Kurchin
38
0
0
19 May 2023
Multi-Fidelity Machine Learning for Excited State Energies of Molecules
Multi-Fidelity Machine Learning for Excited State Energies of Molecules
Vivin Vinod
Sayan Maity
Peter Zaspel
Ulrich Kleinekathöfer
AI4CE
79
9
0
18 May 2023
Accurate transition state generation with an object-aware equivariant
  elementary reaction diffusion model
Accurate transition state generation with an object-aware equivariant elementary reaction diffusion model
Chenru Duan
Yuanqi Du
Haojun Jia
Heather J. Kulik
DiffM
86
52
0
12 Apr 2023
Machine learning for structure-property relationships: Scalability and
  limitations
Machine learning for structure-property relationships: Scalability and limitations
Zhongzheng Tian
Sheng Zhang
Gia-Wei Chern
33
2
0
11 Apr 2023
Wigner kernels: body-ordered equivariant machine learning without a
  basis
Wigner kernels: body-ordered equivariant machine learning without a basis
Filippo Bigi
Sergey Pozdnyakov
Michele Ceriotti
54
16
0
07 Mar 2023
Machine learning for phase ordering dynamics of charge density waves
Machine learning for phase ordering dynamics of charge density waves
Chen Cheng
Sheng Zhang
Gia-Wei Chern
39
10
0
06 Mar 2023
Completeness of Atomic Structure Representations
Completeness of Atomic Structure Representations
M. J. Willatt
Sergey Pozdnyakov
Christoph Ortner
Michele Ceriotti
79
13
0
28 Feb 2023
Generative Adversarial Symmetry Discovery
Generative Adversarial Symmetry Discovery
Jianke Yang
Robin Walters
Nima Dehmamy
Rose Yu
GAN
111
29
0
01 Feb 2023
Improved machine learning algorithm for predicting ground state
  properties
Improved machine learning algorithm for predicting ground state properties
Laura Lewis
Hsin-Yuan Huang
Viet-Trung Tran
Sebastian Lehner
R. Kueng
J. Preskill
AI4CE
89
49
0
30 Jan 2023
Graph Scattering beyond Wavelet Shackles
Graph Scattering beyond Wavelet Shackles
Christian Koke
Gitta Kutyniok
65
4
0
26 Jan 2023
Limitless stability for Graph Convolutional Networks
Limitless stability for Graph Convolutional Networks
Christian Koke
89
3
0
26 Jan 2023
Reconstructing Kernel-based Machine Learning Force Fields with
  Super-linear Convergence
Reconstructing Kernel-based Machine Learning Force Fields with Super-linear Convergence
Stefan Blücher
Klaus-Robert Muller
Stefan Chmiela
94
4
0
24 Dec 2022
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Maciej Majewski
Adriana Pérez
Philipp Thölke
Stefan Doerr
N. Charron
T. Giorgino
B. Husic
C. Clementi
Frank Noé
Gianni De Fabritiis
AI4CE
73
78
0
14 Dec 2022
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
83
65
0
11 Dec 2022
Convolution, aggregation and attention based deep neural networks for
  accelerating simulations in mechanics
Convolution, aggregation and attention based deep neural networks for accelerating simulations in mechanics
Saurabh Deshpande
Raúl I. Sosa
Stéphane P. A. Bordas
J. Lengiewicz
AI4CE
79
20
0
01 Dec 2022
Capturing long-range interaction with reciprocal space neural network
Capturing long-range interaction with reciprocal space neural network
Hongyu Yu
Liangliang Hong
Shiyou Chen
X. Gong
Hongjun Xiang
55
12
0
30 Nov 2022
Learning Regularized Positional Encoding for Molecular Prediction
Learning Regularized Positional Encoding for Molecular Prediction
Xiang Gao
Weihao Gao
Wen Xiao
Zhirui Wang
Chong Wang
Liang Xiang
AI4CE
80
2
0
23 Nov 2022
ParticleGrid: Enabling Deep Learning using 3D Representation of
  Materials
ParticleGrid: Enabling Deep Learning using 3D Representation of Materials
Shehtab Zaman
E. Ferguson
Cécile Pereira
D. Akhiyarov
Mauricio Araya-Polo
Kenneth Chiu
DiffMAI4CE
76
2
0
15 Nov 2022
Leveraging Orbital Information and Atomic Feature in Deep Learning Model
Leveraging Orbital Information and Atomic Feature in Deep Learning Model
Xiangru Yang
88
0
0
29 Oct 2022
Generalizability of Functional Forms for Interatomic Potential Models
  Discovered by Symbolic Regression
Generalizability of Functional Forms for Interatomic Potential Models Discovered by Symbolic Regression
Alberto Hernandez
Tim Mueller
40
1
0
27 Oct 2022
Graph Neural Network Expressivity and Meta-Learning for Molecular
  Property Regression
Graph Neural Network Expressivity and Meta-Learning for Molecular Property Regression
Haitz Sáez de Ocáriz Borde
Federico Barbero
94
2
0
24 Sep 2022
SPICE, A Dataset of Drug-like Molecules and Peptides for Training
  Machine Learning Potentials
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni De Fabritiis
T. Markland
119
113
0
21 Sep 2022
Artificial Intelligence in Material Engineering: A review on
  applications of AI in Material Engineering
Artificial Intelligence in Material Engineering: A review on applications of AI in Material Engineering
Lipichanda Goswami
Manoj Deka
Mohendra Roy
AI4CE
94
22
0
15 Sep 2022
Graph Neural Networks for Molecules
Graph Neural Networks for Molecules
Yuyang Wang
Zijie Li
A. Farimani
GNNAI4CE
160
28
0
12 Sep 2022
Ab-initio quantum chemistry with neural-network wavefunctions
Ab-initio quantum chemistry with neural-network wavefunctions
J. Hermann
J. Spencer
Kenny Choo
Antonio Mezzacapo
W. Foulkes
David Pfau
Giuseppe Carleo
Frank Noé
AI4CE
83
86
0
26 Aug 2022
Algorithmic Differentiation for Automated Modeling of Machine Learned
  Force Fields
Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields
Niklas Schmitz
Klaus-Robert Muller
Stefan Chmiela
AI4CE
77
11
0
25 Aug 2022
A machine learning approach to predict the structural and magnetic
  properties of Heusler alloy families
A machine learning approach to predict the structural and magnetic properties of Heusler alloy families
S. Mitra
Aquil Ahmad
Sajib Biswas
A. Das
34
16
0
07 Aug 2022
Graph Neural Network with Local Frame for Molecular Potential Energy
  Surface
Graph Neural Network with Local Frame for Molecular Potential Energy Surface
Xiyuan Wang
Muhan Zhang
70
12
0
01 Aug 2022
Molecular-orbital-based Machine Learning for Open-shell and
  Multi-reference Systems with Kernel Addition Gaussian Process Regression
Molecular-orbital-based Machine Learning for Open-shell and Multi-reference Systems with Kernel Addition Gaussian Process Regression
Lixue Cheng
Jiace Sun
J. E. Deustua
Vignesh C. Bhethanabotla
Thomas F. Miller
41
7
0
17 Jul 2022
Lagrangian Density Space-Time Deep Neural Network Topology
Lagrangian Density Space-Time Deep Neural Network Topology
B. Bishnoi
PINN
75
1
0
30 Jun 2022
Approximate Equivariance SO(3) Needlet Convolution
Approximate Equivariance SO(3) Needlet Convolution
Kai Yi
Jialin Chen
Yu Guang Wang
Bingxin Zhou
Pietro Lio
Yanan Fan
J. Hamann
55
5
0
17 Jun 2022
Molecular Dipole Moment Learning via Rotationally Equivariant Gaussian
  Process Regression with Derivatives in Molecular-orbital-based Machine
  Learning
Molecular Dipole Moment Learning via Rotationally Equivariant Gaussian Process Regression with Derivatives in Molecular-orbital-based Machine Learning
Jiace Sun
Lixue Cheng
Thomas F. Miller
74
3
0
31 May 2022
Accurate Machine Learned Quantum-Mechanical Force Fields for
  Biomolecular Simulations
Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
Oliver T. Unke
M. Stohr
Stefan Ganscha
Thomas Unterthiner
Hartmut Maennel
...
Daniel Ahlin
M. Gastegger
L. M. Sandonas
A. Tkatchenko
Klaus-Robert Muller
AI4CE
70
18
0
17 May 2022
Machine Learning Diffusion Monte Carlo Energies
Machine Learning Diffusion Monte Carlo Energies
Kevin Ryczko
J. Krogel
Isaac Tamblyn
DiffM
38
14
0
09 May 2022
Machine learning predictions for local electronic properties of
  disordered correlated electron systems
Machine learning predictions for local electronic properties of disordered correlated electron systems
Yi-Hsuan Liu
Sheng Zhang
Puhan Zhang
Ting-Kuo Lee
Gia-Wei Chern
39
8
0
12 Apr 2022
Automatic Identification of Chemical Moieties
Automatic Identification of Chemical Moieties
Jonas Lederer
M. Gastegger
Kristof T. Schütt
Michael C. Kampffmeyer
Klaus-Robert Muller
Oliver T. Unke
69
5
0
30 Mar 2022
Permutation Invariant Representations with Applications to Graph Deep
  Learning
Permutation Invariant Representations with Applications to Graph Deep Learning
R. Balan
Naveed Haghani
M. Singh
72
27
0
14 Mar 2022
A photonic chip-based machine learning approach for the prediction of
  molecular properties
A photonic chip-based machine learning approach for the prediction of molecular properties
Hui Zhang
Jonathan Wei Zhong Lau
Lingxiao Wan
Liang Shi
H. Cai
Xianshu Luo
Guo-qiang Lo
Chee-Kong Lee
L. Kwek
Ajian Liu
74
10
0
03 Mar 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
75
16
0
28 Feb 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni De Fabritiis
AI4CE
129
198
0
05 Feb 2022
Atomistic Simulations for Reactions and Spectroscopy in the Era of
  Machine Learning -- Quo Vadis?
Atomistic Simulations for Reactions and Spectroscopy in the Era of Machine Learning -- Quo Vadis?
Markus Meuwly
AI4CE
25
0
0
11 Jan 2022
Descriptors for Machine Learning Model of Generalized Force Field in
  Condensed Matter Systems
Descriptors for Machine Learning Model of Generalized Force Field in Condensed Matter Systems
Puhan Zhang
Sheng Zhang
Gia-Wei Chern
AI4CE
39
11
0
03 Jan 2022
Machine learning nonequilibrium electron forces for adiabatic spin
  dynamics
Machine learning nonequilibrium electron forces for adiabatic spin dynamics
Puhan Zhang
Gia-Wei Chern
44
16
0
22 Dec 2021
Toward Explainable AI for Regression Models
Toward Explainable AI for Regression Models
S. Letzgus
Patrick Wagner
Jonas Lederer
Wojciech Samek
Klaus-Robert Muller
G. Montavon
XAI
97
67
0
21 Dec 2021
Improving Subgraph Recognition with Variational Graph Information
  Bottleneck
Improving Subgraph Recognition with Variational Graph Information Bottleneck
Junchi Yu
Jie Cao
Ran He
94
56
0
18 Dec 2021
AutoGMap: Learning to Map Large-scale Sparse Graphs on Memristive
  Crossbars
AutoGMap: Learning to Map Large-scale Sparse Graphs on Memristive Crossbars
Bo Lyu
Shengbo Wang
S. Wen
Kaibo Shi
Yin Yang
Lingfang Zeng
Tingwen Huang
37
3
0
15 Nov 2021
Reducing the Long Tail Losses in Scientific Emulations with Active
  Learning
Reducing the Long Tail Losses in Scientific Emulations with Active Learning
Yi Heng Lim
M. F. Kasim
48
0
0
15 Nov 2021
Geometric Transformer for End-to-End Molecule Properties Prediction
Geometric Transformer for End-to-End Molecule Properties Prediction
Yoni Choukroun
Lior Wolf
AI4CEViT
78
16
0
26 Oct 2021
Previous
123456
Next