ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1109.2618
  4. Cited By
Fast and Accurate Modeling of Molecular Atomization Energies with
  Machine Learning

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

12 September 2011
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning"

18 / 268 papers shown
Title
Transforming Bell's Inequalities into State Classifiers with Machine
  Learning
Transforming Bell's Inequalities into State Classifiers with Machine Learning
Yue-Chi Ma
M. Yung
59
77
0
02 May 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
803
7,519
0
04 Apr 2017
Unsupervised learning of phase transitions: from principal component
  analysis to variational autoencoders
Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders
S. J. Wetzel
SSLDRL
52
319
0
07 Mar 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
394
1,851
0
02 Mar 2017
Deep learning and the Schrödinger equation
Deep learning and the Schrödinger equation
Kyle Mills
M. Spanner
Isaac Tamblyn
84
140
0
05 Feb 2017
Deep Learning for Computational Chemistry
Deep Learning for Computational Chemistry
Garrett B. Goh
Nathan Oken Hodas
Abhinav Vishnu
AI4CE
102
681
0
17 Jan 2017
Theory-guided Data Science: A New Paradigm for Scientific Discovery from
  Data
Theory-guided Data Science: A New Paradigm for Scientific Discovery from Data
Anuj Karpatne
G. Atluri
James H. Faghmous
M. Steinbach
A. Banerjee
A. Ganguly
Shashi Shekhar
N. Samatova
Vipin Kumar
AI4CE
97
1,001
0
27 Dec 2016
Localized Coulomb Descriptors for the Gaussian Approximation Potential
Localized Coulomb Descriptors for the Gaussian Approximation Potential
James Barker
J. Bulin
J. Hamaekers
Sonja Mathias
31
24
0
16 Nov 2016
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
272
2,962
0
07 Oct 2016
The Many-Body Expansion Combined with Neural Networks
The Many-Body Expansion Combined with Neural Networks
Kun Yao
John E. Herr
John A. Parkhill
86
97
0
22 Sep 2016
By-passing the Kohn-Sham equations with machine learning
By-passing the Kohn-Sham equations with machine learning
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
121
607
0
09 Sep 2016
Supervised Learning with Quantum-Inspired Tensor Networks
Supervised Learning with Quantum-Inspired Tensor Networks
E. Stoudenmire
D. Schwab
SSL
73
165
0
18 May 2016
Wavelet Scattering Regression of Quantum Chemical Energies
Wavelet Scattering Regression of Quantum Chemical Energies
M. Hirn
S. Mallat
N. Poilvert
64
95
0
16 May 2016
Quantum Energy Regression using Scattering Transforms
Quantum Energy Regression using Scattering Transforms
M. Hirn
N. Poilvert
S. Mallat
74
31
0
06 Feb 2015
Understanding Kernel Ridge Regression: Common behaviors from simple
  functions to density functionals
Understanding Kernel Ridge Regression: Common behaviors from simple functions to density functionals
Kevin Vu
John C. Snyder
Li Li
M. Rupp
Brandon F. Chen
Tarek Khelif
K. Müller
K. Burke
77
100
0
16 Jan 2015
GP-select: Accelerating EM using adaptive subspace preselection
GP-select: Accelerating EM using adaptive subspace preselection
Jacquelyn A. Shelton
Jan Gasthaus
Zhenwen Dai
Jörg Lücke
Arthur Gretton
97
18
0
10 Dec 2014
Understanding Machine-learned Density Functionals
Understanding Machine-learned Density Functionals
Li Li
John C. Snyder
I. Pelaschier
Jessica Huang
U. Niranjan
Paul Duncan
M. Rupp
K. Müller
K. Burke
121
152
0
04 Apr 2014
Orbital-free Bond Breaking via Machine Learning
Orbital-free Bond Breaking via Machine Learning
John C. Snyder
M. Rupp
K. Hansen
Leo Blooston
K. Müller
K. Burke
108
115
0
07 Jun 2013
Previous
123456