Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1109.2618
Cited By
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
12 September 2011
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning"
50 / 268 papers shown
Title
Learning equivariant models by discovering symmetries with learnable augmentations
Eduardo Santos Escriche
Stefanie Jegelka
91
0
0
04 Jun 2025
The Generalized Skew Spectrum of Graphs
Armando Bellante
Martin Plávala
Alessandro Luongo
51
0
0
29 May 2025
Understanding the Capabilities of Molecular Graph Neural Networks in Materials Science Through Multimodal Learning and Physical Context Encoding
Can Polat
Hasan Kurban
Erchin Serpedin
Mustafa Kurban
AI4CE
61
1
0
17 May 2025
EDBench: Large-Scale Electron Density Data for Molecular Modeling
Hongxin Xiang
Ke Li
M. Liu
Zhixiang Cheng
Bin Yao
Wenjie Du
Jun Xia
Li Zeng
Xin Jin
Xiangxiang Zeng
67
0
0
14 May 2025
Quotient Complex Transformer (QCformer) for Perovskite Data Analysis
Xinyu You
Xiang Liu
Chuan-Shen Hu
Kelin Xia
Tze Chien Sum
70
0
0
14 May 2025
Representing spherical tensors with scalar-based machine-learning models
Michelangelo Domina
Filippo Bigi
Paolo Pegolo
Michele Ceriotti
78
0
0
08 May 2025
Universally applicable and tunable graph-based coarse-graining for Machine learning force fields
Christoph Brunken
Sebastien Boyer
Mustafa Omar
Martin Maarand
Olivier Peltre
Solal Attias
Bakary Diallo
Anastasia Markina
Olaf Othersen
Oliver E. Bent
OOD
AI4CE
109
1
0
24 Mar 2025
How simple can you go? An off-the-shelf transformer approach to molecular dynamics
Max Eissler
Tim Korjakow
Stefan Ganscha
Oliver T. Unke
Klaus-Robert Müller
Stefan Gugler
127
2
0
03 Mar 2025
Effective Field Neural Network
Xi Liu
Yujun Zhao
Chun Yu Wan
Yang Zhang
Junwei Liu
AI4CE
85
0
0
24 Feb 2025
Predicting the Energy Landscape of Stochastic Dynamical System via Physics-informed Self-supervised Learning
Ruikun Li
Huandong Wang
Qingmin Liao
Yong Li
57
2
0
24 Feb 2025
Survey on Recent Progress of AI for Chemistry: Methods, Applications, and Opportunities
Ding Hu
Pengxiang Hua
Zhen Huang
268
0
0
09 Feb 2025
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Matthias Holzenkamp
Dongyu Lyu
Ulrich Kleinekathöfer
Peter Zaspel
95
0
0
10 Jan 2025
OpenQDC: Open Quantum Data Commons
Cristian Gabellini
Nikhil Shenoy
Stephan Thaler
Semih Cantürk
Daniel McNeela
Dominique Beaini
Michael Bronstein
Prudencio Tossou
AI4CE
167
1
0
29 Nov 2024
Integrating Graph Neural Networks and Many-Body Expansion Theory for Potential Energy Surfaces
Siqi Chen
Zhiqiang Wang
Xianqi Deng
Yili Shen
C. Ju
...
Lin Xiong
Guo Ling
Dieaa Alhmoud
Hui Guan
Zhou Lin
75
0
0
03 Nov 2024
Investigating Data Hierarchies in Multifidelity Machine Learning for Excitation Energies
Vivin Vinod
Peter Zaspel
99
1
0
15 Oct 2024
Pretraining Graph Transformers with Atom-in-a-Molecule Quantum Properties for Improved ADMET Modeling
Alessio Fallani
Ramil I. Nugmanov
Jose A. Arjona-Medina
Jörg Kurt Wegner
Alexandre Tkatchenko
Kostiantyn Chernichenko
MedIm
AI4CE
70
2
0
10 Oct 2024
Hydrogen under Pressure as a Benchmark for Machine-Learning Interatomic Potentials
Thomas Bischoff
Bastian Jäckl
Matthias Rupp
48
2
0
20 Sep 2024
Towards Symbolic XAI -- Explanation Through Human Understandable Logical Relationships Between Features
Thomas Schnake
Farnoush Rezaei Jafaria
Jonas Lederer
Ping Xiong
Shinichi Nakajima
Stefan Gugler
G. Montavon
Klaus-Robert Müller
97
4
0
30 Aug 2024
A Large Encoder-Decoder Family of Foundation Models For Chemical Language
Eduardo Soares
Victor Shirasuna
E. V. Brazil
Renato F. G. Cerqueira
Dmitry Zubarev
Kristin Schmidt
AI4CE
79
8
0
24 Jul 2024
Assessing Non-Nested Configurations of Multifidelity Machine Learning for Quantum-Chemical Properties
Vivin Vinod
Peter Zaspel
AI4CE
95
3
0
24 Jul 2024
Probing the effects of broken symmetries in machine learning
Marcel F. Langer
Sergey Pozdnyakov
Michele Ceriotti
AI4CE
85
10
0
25 Jun 2024
Encoder-Decoder Neural Networks in Interpretation of X-ray Spectra
Jalmari Passilahti
A. Vladyka
Johannes Niskanen
38
1
0
20 Jun 2024
Multi-Type Point Cloud Autoencoder: A Complete Equivariant Embedding for Molecule Conformation and Pose
Michael Kilgour
Mark Tuckerman
Jutta Rogal
114
0
0
22 May 2024
Data-Error Scaling in Machine Learning on Natural Discrete Combinatorial Mutation-prone Sets: Case Studies on Peptides and Small Molecules
Vanni Doffini
O. A. von Lilienfeld
Michael A. Nash
60
1
0
08 May 2024
FeNNol: an Efficient and Flexible Library for Building Force-field-enhanced Neural Network Potentials
Thomas Plé
Olivier Adjoua
Louis Lagardère
Jean‐Philip Piquemal
169
9
0
02 May 2024
Transfer Learning for Molecular Property Predictions from Small Data Sets
Thorren Kirschbaum
A. Bande
AI4CE
39
2
0
20 Apr 2024
Molecular relaxation by reverse diffusion with time step prediction
Khaled Kahouli
Stefaan S. P. Hessmann
Klaus-Robert Muller
Shinichi Nakajima
Stefan Gugler
Niklas W. A. Gebauer
DiffM
74
6
0
16 Apr 2024
Twins in rotational spectroscopy: Does a rotational spectrum uniquely identify a molecule?
Marcus Schwarting
Nathan A Seifert
Michael J. Davis
Ben Blaiszik
Ian Foster
Kirill Prozument
58
2
0
05 Apr 2024
Expanding Chemical Representation with k-mers and Fragment-based Fingerprints for Molecular Fingerprinting
Sarwan Ali
Prakash Chourasia
Murray Patterson
24
1
0
28 Mar 2024
3M-Diffusion: Latent Multi-Modal Diffusion for Text-Guided Generation of Molecular Graphs
Huaisheng Zhu
Teng Xiao
V. Honavar
DiffM
79
1
0
11 Mar 2024
Multi-Modal Representation Learning for Molecular Property Prediction: Sequence, Graph, Geometry
Zeyu Wang
Tianyi Jiang
Jinhuan Wang
Qi Xuan
AI4CE
148
8
0
07 Jan 2024
Predicting Properties of Periodic Systems from Cluster Data: A Case Study of Liquid Water
Viktor Zaverkin
David Holzmüller
Robin Schuldt
Johannes Kastner
68
18
0
03 Dec 2023
Symphony: Symmetry-Equivariant Point-Centered Spherical Harmonics for Molecule Generation
Ameya Daigavane
Song Kim
Mario Geiger
Tess E. Smidt
123
10
0
27 Nov 2023
Interpretable Prototype-based Graph Information Bottleneck
Sangwoo Seo
Sungwon Kim
Chanyoung Park
70
14
0
30 Oct 2023
Using Slisemap to interpret physical data
Lauri Seppäläinen
Anton Björklund
V. Besel
Kai Puolamäki
67
1
0
24 Oct 2023
Rethinking Tokenizer and Decoder in Masked Graph Modeling for Molecules
Zhiyuan Liu
Yaorui Shi
An Zhang
Enzhi Zhang
Kenji Kawaguchi
Xiang Wang
Tat-Seng Chua
AI4CE
93
40
0
23 Oct 2023
A Survey on Quantum Machine Learning: Current Trends, Challenges, Opportunities, and the Road Ahead
Kamila Zaman
Alberto Marchisio
Muhammad Abdullah Hanif
Mohamed Bennai
126
26
0
16 Oct 2023
Insightful analysis of historical sources at scales beyond human capabilities using unsupervised Machine Learning and XAI
Oliver Eberle
Jochen Büttner
Hassan el-Hajj
G. Montavon
Klaus-Robert Muller
Matteo Valleriani
65
2
0
13 Oct 2023
HoloNets: Spectral Convolutions do extend to Directed Graphs
Christian Koke
Zorah Lähner
106
11
0
03 Oct 2023
ResolvNet: A Graph Convolutional Network with multi-scale Consistency
Christian Koke
Abhishek Saroha
Yuesong Shen
Marvin Eisenberger
Zorah Lähner
GNN
59
1
0
30 Sep 2023
From Peptides to Nanostructures: A Euclidean Transformer for Fast and Stable Machine Learned Force Fields
J. Frank
Oliver T. Unke
Klaus-Robert Muller
Stefan Chmiela
71
3
0
21 Sep 2023
Matbench Discovery -- A framework to evaluate machine learning crystal stability predictions
Janosh Riebesell
Rhys E. A. Goodall
Philipp Benner
Chiang Yuan
Bowen Deng
A. Lee
Anubhav Jain
Kristin A. Persson
OOD
79
44
0
28 Aug 2023
Physics-inspired Equivariant Descriptors of Non-bonded Interactions
Kevin K. Huguenin-Dumittan
P. Loche
Haoran Ni
Michele Ceriotti
42
22
0
25 Aug 2023
Modeling Edge Features with Deep Bayesian Graph Networks
Daniele Atzeni
Federico Errica
D. Bacciu
Alessio Micheli
75
7
0
17 Aug 2023
Rotation-Invariant Random Features Provide a Strong Baseline for Machine Learning on 3D Point Clouds
O. Melia
Eric Jonas
Rebecca Willett
OOD
3DPC
73
3
0
27 Jul 2023
On minimizing the training set fill distance in machine learning regression
Paolo Climaco
Jochen Garcke
47
1
0
20 Jul 2023
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural Wavefunctions
Michael Scherbela
Leon Gerard
Philipp Grohs
68
7
0
15 Jul 2023
Substitutional Alloying Using Crystal Graph Neural Networks
Dario Massa
Daniel Cie'sliñski
A. Naghdi
Stefanos Papanikolaou
AI4CE
47
1
0
19 Jun 2023
Efficient Approximations of Complete Interatomic Potentials for Crystal Property Prediction
Yu-Ching Lin
Keqiang Yan
Youzhi Luo
Yi Liu
Xiaoning Qian
Shuiwang Ji
211
37
0
12 Jun 2023
Scaling Spherical CNNs
Carlos Esteves
Jean-Jacques E. Slotine
A. Makadia
GNN
LRM
85
14
0
08 Jun 2023
1
2
3
4
5
6
Next