ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1109.2618
  4. Cited By
Fast and Accurate Modeling of Molecular Atomization Energies with
  Machine Learning

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

12 September 2011
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning"

50 / 268 papers shown
Title
Kohn-Sham equations as regularizer: building prior knowledge into
  machine-learned physics
Kohn-Sham equations as regularizer: building prior knowledge into machine-learned physics
Li Li
Stephan Hoyer
Ryan Pederson
Ruoxi Sun
E. D. Cubuk
Patrick F. Riley
K. Burke
AI4CE
94
125
0
17 Sep 2020
The role of feature space in atomistic learning
The role of feature space in atomistic learning
Alexander Goscinski
Guillaume Fraux
G. Imbalzano
Michele Ceriotti
26
29
0
06 Sep 2020
Multi-scale approach for the prediction of atomic scale properties
Multi-scale approach for the prediction of atomic scale properties
Andrea Grisafi
Jigyasa Nigam
Michele Ceriotti
41
31
0
27 Aug 2020
Relevance of Rotationally Equivariant Convolutions for Predicting
  Molecular Properties
Relevance of Rotationally Equivariant Convolutions for Predicting Molecular Properties
Benjamin Kurt Miller
Mario Geiger
Tess E. Smidt
Frank Noé
110
78
0
19 Aug 2020
Orbital Graph Convolutional Neural Network for Material Property
  Prediction
Orbital Graph Convolutional Neural Network for Material Property Prediction
M. Karamad
Rishikesh Magar
Yuting Shi
Samira Siahrostami
I. Gates
A. Farimani
77
85
0
14 Aug 2020
A community-powered search of machine learning strategy space to find
  NMR property prediction models
A community-powered search of machine learning strategy space to find NMR property prediction models
Lars A. Bratholm
W. Gerrard
Brandon M. Anderson
Shaojie Bai
Sunghwan Choi
...
A. Torrubia
Devin Willmott
C. Butts
David R. Glowacki
Kaggle participants
46
17
0
13 Aug 2020
Machine Learning in Nano-Scale Biomedical Engineering
Machine Learning in Nano-Scale Biomedical Engineering
Alexandros-Apostolos A. Boulogeorgos
Stylianos E. Trevlakis
Sotiris A. Tegos
V. Papanikolaou
G. Karagiannidis
AI4CE
41
30
0
05 Aug 2020
DeePKS: a comprehensive data-driven approach towards chemically accurate
  density functional theory
DeePKS: a comprehensive data-driven approach towards chemically accurate density functional theory
Yixiao Chen
Linfeng Zhang
Han Wang
E. Weinan
76
73
0
01 Aug 2020
Coarse Graining Molecular Dynamics with Graph Neural Networks
Coarse Graining Molecular Dynamics with Graph Neural Networks
B. Husic
N. Charron
Dominik Lemm
Jiang Wang
Adria Pérez
...
Yaoyi Chen
Simon Olsson
Gianni De Fabritiis
Frank Noé
C. Clementi
AI4CE
125
162
0
22 Jul 2020
MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph
  Representation and Learning
MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph Representation and Learning
Xuebin Zheng
Bingxin Zhou
Ming Li
Yu Guang Wang
Junbin Gao
74
2
0
22 Jul 2020
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
  Atomic-Orbital Features
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features
Zhuoran Qiao
Matthew Welborn
Anima Anandkumar
F. Manby
Thomas F. Miller
AI4CE
91
218
0
15 Jul 2020
Atomistic Structure Learning Algorithm with surrogate energy model
  relaxation
Atomistic Structure Learning Algorithm with surrogate energy model relaxation
H. L. Mortensen
S. A. Meldgaard
M. K. Bisbo
Mads-Peter V. Christiansen
B. Hammer
15
17
0
15 Jul 2020
Machine learning for electronically excited states of molecules
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
71
266
0
10 Jul 2020
Path Integral Based Convolution and Pooling for Graph Neural Networks
Path Integral Based Convolution and Pooling for Graph Neural Networks
Zheng Ma
Junyu Xuan
Yu Guang Wang
Ming Li
Pietro Lio
GNN
89
56
0
29 Jun 2020
Committee neural network potentials control generalization errors and
  enable active learning
Committee neural network potentials control generalization errors and enable active learning
Christoph Schran
K. Brezina
O. Marsalek
61
131
0
02 Jun 2020
Wavelet Scattering Networks for Atomistic Systems with Extrapolation of
  Material Properties
Wavelet Scattering Networks for Atomistic Systems with Extrapolation of Material Properties
Paul Sinz
M. Swift
Xavier Brumwell
Jialin Liu
K. Kim
Y. Qi
M. Hirn
55
12
0
01 Jun 2020
Semi-Supervised Hierarchical Drug Embedding in Hyperbolic Space
Semi-Supervised Hierarchical Drug Embedding in Hyperbolic Space
Ke Yu
Shyam Visweswaran
Kayhan Batmanghelich
BDL
37
29
0
01 Jun 2020
Machine Learning for Condensed Matter Physics
Machine Learning for Condensed Matter Physics
Edwin Bedolla
L. C. Padierna
R. Castañeda-Priego
AI4CE
80
68
0
28 May 2020
Machine learning and excited-state molecular dynamics
Machine learning and excited-state molecular dynamics
Julia Westermayr
P. Marquetand
AI4CE
63
56
0
28 May 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular
  Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
98
86
0
18 May 2020
Learning the gravitational force law and other analytic functions
Learning the gravitational force law and other analytic functions
Atish Agarwala
Abhimanyu Das
Rina Panigrahy
Qiuyi Zhang
MLT
43
0
0
15 May 2020
Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with
  a Kernel Approach
Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with a Kernel Approach
Jiang Wang
Stefan Chmiela
K. Müller
Frank Noè
C. Clementi
138
46
0
04 May 2020
Variational Integrator Graph Networks for Learning Energy Conserving
  Dynamical Systems
Variational Integrator Graph Networks for Learning Energy Conserving Dynamical Systems
Shaan Desai
M. Mattheakis
Stephen J. Roberts
PINNAI4CE
66
12
0
28 Apr 2020
A Perspective on Deep Learning for Molecular Modeling and Simulations
A Perspective on Deep Learning for Molecular Modeling and Simulations
Jun Zhang
Yao-Kun Lei
Zhen Zhang
Junhan Chang
Maodong Li
Xu Han
Lijiang Yang
Yue Yang
Y. Gao
AI4CE
116
8
0
25 Apr 2020
Autonomous discovery in the chemical sciences part II: Outlook
Autonomous discovery in the chemical sciences part II: Outlook
Connor W. Coley
Natalie S. Eyke
K. Jensen
91
175
0
30 Mar 2020
Predicting molecular dipole moments by combining atomic partial charges
  and atomic dipoles
Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles
M. Veit
D. Wilkins
Yang Yang
R. DiStasio
Michele Ceriotti
78
94
0
27 Mar 2020
Representations of molecules and materials for interpolation of
  quantum-mechanical simulations via machine learning
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
Marcel F. Langer
Alex Goessmann
M. Rupp
AI4CE
73
99
0
26 Mar 2020
Predicting Elastic Properties of Materials from Electronic Charge
  Density Using 3D Deep Convolutional Neural Networks
Predicting Elastic Properties of Materials from Electronic Charge Density Using 3D Deep Convolutional Neural Networks
Yong Zhao
Kunpeng Yuan
Yinqiao Liu
Steph-Yves M. Louis
Ming Hu
Jianjun Hu
55
26
0
17 Mar 2020
Automated discovery of a robust interatomic potential for aluminum
Automated discovery of a robust interatomic potential for aluminum
Justin S. Smith
B. Nebgen
N. Mathew
Jie Chen
Nicholas Lubbers
...
S. Tretiak
H. Nam
T. Germann
S. Fensin
K. Barros
46
83
0
10 Mar 2020
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
184
439
0
10 Mar 2020
ML4Chem: A Machine Learning Package for Chemistry and Materials Science
ML4Chem: A Machine Learning Package for Chemistry and Materials Science
Muammar El Khatib
W. A. Jong
VLM
35
6
0
02 Mar 2020
Generalizing Convolutional Neural Networks for Equivariance to Lie
  Groups on Arbitrary Continuous Data
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
Marc Finzi
Samuel Stanton
Pavel Izmailov
A. Wilson
140
324
0
25 Feb 2020
Structure-Property Maps with Kernel Principal Covariates Regression
Structure-Property Maps with Kernel Principal Covariates Regression
B. Helfrecht
Rose K. Cersonsky
Guillaume Fraux
Michele Ceriotti
31
37
0
12 Feb 2020
Molecule Property Prediction and Classification with Graph Hypernetworks
Molecule Property Prediction and Classification with Graph Hypernetworks
Eliya Nachmani
Lior Wolf
GNN
54
15
0
01 Feb 2020
Big-Data Science in Porous Materials: Materials Genomics and Machine
  Learning
Big-Data Science in Porous Materials: Materials Genomics and Machine Learning
Kevin Maik Jablonka
D. Ongari
S. M. Moosavi
B. Smit
AI4CE
85
365
0
18 Jan 2020
Building high accuracy emulators for scientific simulations with deep
  neural architecture search
Building high accuracy emulators for scientific simulations with deep neural architecture search
M. F. Kasim
D. Watson‐Parris
L. Deaconu
Sophy Oliver
P. Hatfield
...
S. Khatiwala
J. Korenaga
J. Topp-Mugglestone
E. Viezzer
S. Vinko
AI4CE
54
95
0
17 Jan 2020
TeaNet: universal neural network interatomic potential inspired by
  iterative electronic relaxations
TeaNet: universal neural network interatomic potential inspired by iterative electronic relaxations
So Takamoto
S. Izumi
Ju Li
GNN
65
80
0
02 Dec 2019
Deep Density: circumventing the Kohn-Sham equations via symmetry
  preserving neural networks
Deep Density: circumventing the Kohn-Sham equations via symmetry preserving neural networks
Leonardo Zepeda-Núnez
Yixiao Chen
Jiefu Zhang
Weile Jia
Linfeng Zhang
Lin Lin
75
33
0
27 Nov 2019
Neural Network Based in Silico Simulation of Combustion Reactions
Neural Network Based in Silico Simulation of Combustion Reactions
Jinzhe Zeng
Liqun Cao
Mingyuan Xu
Tong Zhu
John Z. H. Zhang
AI4CE
32
9
0
27 Nov 2019
Machine learning for protein folding and dynamics
Machine learning for protein folding and dynamics
Frank Noé
Gianni De Fabritiis
C. Clementi
AI4CE
121
138
0
22 Nov 2019
Machine learning for molecular simulation
Machine learning for molecular simulation
Frank Noé
A. Tkatchenko
K. Müller
C. Clementi
AI4CE
90
668
0
07 Nov 2019
Leveraging Legacy Data to Accelerate Materials Design via Preference
  Learning
Leveraging Legacy Data to Accelerate Materials Design via Preference Learning
Xiaolin Sun
Z. Hou
Masato Sumita
Shinsuke Ishihara
Ryo Tamura
Koji Tsuda
41
7
0
25 Oct 2019
Flow-based Alignment Approaches for Probability Measures in Different
  Spaces
Flow-based Alignment Approaches for Probability Measures in Different Spaces
Tam Le
Nhat Ho
M. Yamada
OT
404
0
0
10 Oct 2019
Generating valid Euclidean distance matrices
Generating valid Euclidean distance matrices
Moritz Hoffmann
Frank Noé
88
56
0
07 Oct 2019
Learning Everywhere: A Taxonomy for the Integration of Machine Learning
  and Simulations
Learning Everywhere: A Taxonomy for the Integration of Machine Learning and Simulations
Geoffrey C. Fox
S. Jha
AI4CE
72
13
0
29 Sep 2019
Deep neural network solution of the electronic Schrödinger equation
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
308
459
0
16 Sep 2019
Regression-clustering for Improved Accuracy and Training Cost with
  Molecular-Orbital-Based Machine Learning
Regression-clustering for Improved Accuracy and Training Cost with Molecular-Orbital-Based Machine Learning
Lixue Cheng
Nikola B. Kovachki
Matthew Welborn
Thomas F. Miller
82
45
0
04 Sep 2019
Gated Graph Recursive Neural Networks for Molecular Property Prediction
Gated Graph Recursive Neural Networks for Molecular Property Prediction
Hiroyuki Shindo
Yuji Matsumoto
GNN
80
16
0
31 Aug 2019
Trees and Islands -- Machine learning approach to nuclear physics
Trees and Islands -- Machine learning approach to nuclear physics
Nishchal R. Dwivedi
17
3
0
23 Jul 2019
Fast Haar Transforms for Graph Neural Networks
Fast Haar Transforms for Graph Neural Networks
Ming Li
Zheng Ma
Yu Guang Wang
Xiaosheng Zhuang
83
77
0
10 Jul 2019
Previous
123456
Next