ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1109.2618
  4. Cited By
Fast and Accurate Modeling of Molecular Atomization Energies with
  Machine Learning

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

12 September 2011
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning"

50 / 268 papers shown
Title
Using Clinical Drug Representations for Improving Mortality and Length
  of Stay Predictions
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions
Batuhan Bardak
Mehmet Tan
34
2
0
17 Oct 2021
Surrogate-Based Black-Box Optimization Method for Costly Molecular
  Properties
Surrogate-Based Black-Box Optimization Method for Costly Molecular Properties
J. Leguy
Thomas Cauchy
B. Duval
Benoit Da Mota
AI4CE
36
0
0
01 Oct 2021
Scalable deeper graph neural networks for high-performance materials
  property prediction
Scalable deeper graph neural networks for high-performance materials property prediction
Sadman Sadeed Omee
Steph-Yves M. Louis
Nihang Fu
Lai Wei
Sourin Dey
Rongzhi Dong
Qinyang Li
Jianjun Hu
132
77
0
25 Sep 2021
Fast and Sample-Efficient Interatomic Neural Network Potentials for
  Molecules and Materials Based on Gaussian Moments
Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
Viktor Zaverkin
David Holzmüller
Ingo Steinwart
Johannes Kastner
72
21
0
20 Sep 2021
Gaussian Moments as Physically Inspired Molecular Descriptors for
  Accurate and Scalable Machine Learning Potentials
Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials
Viktor Zaverkin
Johannes Kastner
80
69
0
15 Sep 2021
Physics-based machine learning for modeling stochastic IP3-dependent
  calcium dynamics
Physics-based machine learning for modeling stochastic IP3-dependent calcium dynamics
Oliver K. Ernst
T. Bartol
T. Sejnowski
E. Mjolsness
23
0
0
10 Sep 2021
Inverse design of 3d molecular structures with conditional generative
  neural networks
Inverse design of 3d molecular structures with conditional generative neural networks
Niklas W. A. Gebauer
M. Gastegger
Stefaan S. P. Hessmann
Klaus-Robert Muller
Kristof T. Schütt
AI4CE
259
180
0
10 Sep 2021
MaterialsAtlas.org: A Materials Informatics Web App Platform for
  Materials Discovery and Survey of State-of-the-Art
MaterialsAtlas.org: A Materials Informatics Web App Platform for Materials Discovery and Survey of State-of-the-Art
Jianjun Hu
Stanislav Stefanov
Yuqi Song
Sadman Sadeed Omee
Steph-Yves M. Louis
Edirisuriya M Dilanga Siriwardane
Yong Zhao
90
34
0
09 Sep 2021
Functional Nanomaterials Design in the Workflow of Building
  Machine-Learning Models
Functional Nanomaterials Design in the Workflow of Building Machine-Learning Models
Zhexu Xi
AI4CE
28
0
0
16 Aug 2021
Distributed Representations of Atoms and Materials for Machine Learning
Distributed Representations of Atoms and Materials for Machine Learning
Luis M. Antunes
R. Grau‐Crespo
K. Butler
AI4CE
32
27
0
30 Jul 2021
Deciphering Cryptic Behavior in Bimetallic Transition Metal Complexes
  with Machine Learning
Deciphering Cryptic Behavior in Bimetallic Transition Metal Complexes with Machine Learning
Michael G. Taylor
Aditya Nandy
Connie C. Lu
Heather J. Kulik
35
8
0
29 Jul 2021
GeoT: A Geometry-aware Transformer for Reliable Molecular Property
  Prediction and Chemically Interpretable Representation Learning
GeoT: A Geometry-aware Transformer for Reliable Molecular Property Prediction and Chemically Interpretable Representation Learning
Bumju Kwak
J. Park
Taewon Kang
Jeonghee Jo
Byunghan Lee
Sungroh Yoon
AI4CE
81
6
0
29 Jun 2021
Molecule Generation by Principal Subgraph Mining and Assembling
Molecule Generation by Principal Subgraph Mining and Assembling
Xiangzhe Kong
Wenbing Huang
Zhixing Tan
Yang Liu
GNN
99
47
0
29 Jun 2021
Representations and Strategies for Transferable Machine Learning Models
  in Chemical Discovery
Representations and Strategies for Transferable Machine Learning Models in Chemical Discovery
Daniel R Harper
Aditya Nandy
N. Arunachalam
Chenru Duan
J. Janet
Heather J. Kulik
23
8
0
20 Jun 2021
Large-Scale Chemical Language Representations Capture Molecular
  Structure and Properties
Large-Scale Chemical Language Representations Capture Molecular Structure and Properties
Jerret Ross
Brian M. Belgodere
Vijil Chenthamarakshan
Inkit Padhi
Youssef Mroueh
Payel Das
AI4CE
91
304
0
17 Jun 2021
Flexible dual-branched message passing neural network for quantum
  mechanical property prediction with molecular conformation
Flexible dual-branched message passing neural network for quantum mechanical property prediction with molecular conformation
Jeonghee Jo
Bumju Kwak
Byunghan Lee
Sungroh Yoon
69
2
0
14 Jun 2021
BIGDML: Towards Exact Machine Learning Force Fields for Materials
BIGDML: Towards Exact Machine Learning Force Fields for Materials
H. E. Sauceda
Luis E Gálvez-González
Stefan Chmiela
L. O. Paz-Borbón
K. Müller
A. Tkatchenko
AI4CE
69
48
0
08 Jun 2021
VolterraNet: A higher order convolutional network with group
  equivariance for homogeneous manifolds
VolterraNet: A higher order convolutional network with group equivariance for homogeneous manifolds
Monami Banerjee
Rudrasis Chakraborty
Jose J. Bouza
B. Vemuri
52
11
0
05 Jun 2021
SE(3)-equivariant prediction of molecular wavefunctions and electronic
  densities
SE(3)-equivariant prediction of molecular wavefunctions and electronic densities
Oliver T. Unke
Mihail Bogojeski
M. Gastegger
Mario Geiger
Tess E. Smidt
Klaus-Robert Muller
94
94
0
04 Jun 2021
Optimal radial basis for density-based atomic representations
Optimal radial basis for density-based atomic representations
Alexander Goscinski
Félix Musil
Sergey Pozdnyakov
Michele Ceriotti
64
18
0
18 May 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
234
255
0
01 May 2021
Accurate Prediction of Free Solvation Energy of Organic Molecules via
  Graph Attention Network and Message Passing Neural Network from Pairwise
  Atomistic Interactions
Accurate Prediction of Free Solvation Energy of Organic Molecules via Graph Attention Network and Message Passing Neural Network from Pairwise Atomistic Interactions
Ramin Ansari
Amirata Ghorbani
48
1
0
15 Apr 2021
PDO-eS2CNNs: Partial Differential Operator Based Equivariant Spherical
  CNNs
PDO-eS2CNNs: Partial Differential Operator Based Equivariant Spherical CNNs
Zhengyang Shen
Tiancheng Shen
Zhouchen Lin
Jinwen Ma
51
21
0
08 Apr 2021
Assessment of machine learning methods for state-to-state approaches
Assessment of machine learning methods for state-to-state approaches
L. Campoli
E. Kustova
Polina Maltseva
AI4CE
20
2
0
02 Apr 2021
Detecting Label Noise via Leave-One-Out Cross-Validation
Detecting Label Noise via Leave-One-Out Cross-Validation
Yu-Hang Tang
Yuanran Zhu
W. A. Jong
64
3
0
21 Mar 2021
Recognizing Predictive Substructures with Subgraph Information
  Bottleneck
Recognizing Predictive Substructures with Subgraph Information Bottleneck
Junchi Yu
Tingyang Xu
Yu Rong
Yatao Bian
Junzhou Huang
Ran He
73
47
0
20 Mar 2021
Calibrated simplex-mapping classification
Calibrated simplex-mapping classification
R. Heese
J. Schmid
Michal Walczak
Michael Bortz
71
3
0
04 Mar 2021
Accelerated Simulations of Molecular Systems through Learning of their
  Effective Dynamics
Accelerated Simulations of Molecular Systems through Learning of their Effective Dynamics
Pantelis R. Vlachas
Julija Zavadlav
M. Praprotnik
Petros Koumoutsakos
AI4CE
56
3
0
17 Feb 2021
How Framelets Enhance Graph Neural Networks
How Framelets Enhance Graph Neural Networks
Xuebin Zheng
Bingxin Zhou
Junbin Gao
Yu Guang Wang
Pietro Lio
Ming Li
Guido Montúfar
118
69
0
13 Feb 2021
Artificial Intelligence based Autonomous Molecular Design for Medical
  Therapeutic: A Perspective
Artificial Intelligence based Autonomous Molecular Design for Medical Therapeutic: A Perspective
R. P. Joshi
Neeraj Kumar
63
2
0
10 Feb 2021
Equivariant message passing for the prediction of tensorial properties
  and molecular spectra
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
118
545
0
05 Feb 2021
A Universal Framework for Featurization of Atomistic Systems
A Universal Framework for Featurization of Atomistic Systems
Xiangyun Lei
A. Medford
AI4CE
89
19
0
04 Feb 2021
Bosonic Random Walk Networks for Graph Learning
Bosonic Random Walk Networks for Graph Learning
Shiv Shankar
Don Towsley
GNNAI4CE
132
2
0
31 Dec 2020
Particle Swarm Based Hyper-Parameter Optimization for Machine Learned
  Interatomic Potentials
Particle Swarm Based Hyper-Parameter Optimization for Machine Learned Interatomic Potentials
S. Natarajan
M. A. Caro
29
7
0
31 Dec 2020
Twin Neural Network Regression
Twin Neural Network Regression
S. J. Wetzel
Kevin Ryczko
R. Melko
Isaac Tamblyn
UQCV
81
12
0
29 Dec 2020
Improving Sample and Feature Selection with Principal Covariates
  Regression
Improving Sample and Feature Selection with Principal Covariates Regression
Rose K. Cersonsky
B. Helfrecht
Edgar A. Engel
Michele Ceriotti
42
33
0
22 Dec 2020
Deep learning Local Reduced Density Matrices for Many-body Hamiltonian
  Estimation
Deep learning Local Reduced Density Matrices for Many-body Hamiltonian Estimation
Xinran Ma
Z. C. Tu
Shi-Ju Ran
32
8
0
05 Dec 2020
Rapid Exploration of Optimization Strategies on Advanced Architectures
  using TestSNAP and LAMMPS
Rapid Exploration of Optimization Strategies on Advanced Architectures using TestSNAP and LAMMPS
Rahulkumar Gayatri
S. Moore
Evan Weinberg
Nicholas Lubbers
S. I. G. Anderson
J. Deslippe
D. Perez
A. Thompson
39
9
0
25 Nov 2020
Spherical convolutions on molecular graphs for protein model quality
  assessment
Spherical convolutions on molecular graphs for protein model quality assessment
Ilia Igashov
Nikita Pavlichenko
Sergei Grudinin
122
14
0
16 Nov 2020
Quantum deep field: data-driven wave function, electron density
  generation, and atomization energy prediction and extrapolation with machine
  learning
Quantum deep field: data-driven wave function, electron density generation, and atomization energy prediction and extrapolation with machine learning
Masashi Tsubaki
T. Mizoguchi
55
37
0
16 Nov 2020
Uncertainty estimation for molecular dynamics and sampling
Uncertainty estimation for molecular dynamics and sampling
G. Imbalzano
Yongbin Zhuang
V. Kapil
K. Rossi
Edgar A. Engel
Federico Grasselli
Michele Ceriotti
50
5
0
10 Nov 2020
Machine learning of solvent effects on molecular spectra and reactions
Machine learning of solvent effects on molecular spectra and reactions
M. Gastegger
Kristof T. Schütt
Klaus-Robert Muller
AI4CE
71
62
0
28 Oct 2020
Learning Invariances in Neural Networks
Learning Invariances in Neural Networks
Gregory W. Benton
Marc Finzi
Pavel Izmailov
A. Wilson
94
70
0
22 Oct 2020
Machine Learning Force Fields
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
143
940
0
14 Oct 2020
Graph Information Bottleneck for Subgraph Recognition
Graph Information Bottleneck for Subgraph Recognition
Junchi Yu
Tingyang Xu
Yu Rong
Yatao Bian
Junzhou Huang
Ran He
60
157
0
12 Oct 2020
Efficient Long-Range Convolutions for Point Clouds
Efficient Long-Range Convolutions for Point Clouds
Yifan Peng
Lin Lin
Lexing Ying
Leonardo Zepeda-Núnez
3DPC
42
8
0
11 Oct 2020
Accelerating Finite-temperature Kohn-Sham Density Functional Theory with
  Deep Neural Networks
Accelerating Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks
J. Ellis
Lenz Fiedler
G. Popoola
N. Modine
J. A. Stephens
A. Thompson
A. Cangi
S. Rajamanickam
AI4CE
58
40
0
10 Oct 2020
Efficient Generalized Spherical CNNs
Efficient Generalized Spherical CNNs
Oliver Cobb
C. Wallis
Augustine N. Mavor-Parker
Augustin Marignier
Matthew Alexander Price
Mayeul dÁvezac
Jason D. McEwen
87
35
0
09 Oct 2020
Olympus: a benchmarking framework for noisy optimization and experiment
  planning
Olympus: a benchmarking framework for noisy optimization and experiment planning
Florian Hase
Matteo Aldeghi
Riley J. Hickman
L. Roch
M. Christensen
Elena Liles
J. Hein
Alán Aspuru-Guzik
67
60
0
08 Oct 2020
Chemical Property Prediction Under Experimental Biases
Chemical Property Prediction Under Experimental Biases
Yang Liu
H. Kashima
AI4CE
52
1
0
18 Sep 2020
Previous
123456
Next