ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.3255
  4. Cited By
Church: a language for generative models
v1v2 (latest)

Church: a language for generative models

13 June 2012
Noah D. Goodman
Vikash K. Mansinghka
Daniel M. Roy
Keith Bonawitz
J. Tenenbaum
ArXiv (abs)PDFHTML

Papers citing "Church: a language for generative models"

50 / 178 papers shown
Title
DynamicPPL: Stan-like Speed for Dynamic Probabilistic Models
DynamicPPL: Stan-like Speed for Dynamic Probabilistic Models
Mohamed Tarek
Kai Xu
Martin Trapp
Hong Ge
Zoubin Ghahramani
43
7
0
07 Feb 2020
Stochastic Probabilistic Programs
Stochastic Probabilistic Programs
David Tolpin
Tomer Dobkin
39
0
0
08 Jan 2020
Blang: Bayesian declarative modelling of general data structures and
  inference via algorithms based on distribution continua
Blang: Bayesian declarative modelling of general data structures and inference via algorithms based on distribution continua
Alexandre Bouchard-Côté
Kevin Chern
Davor Cubranic
Sahand Hosseini
Justin Hume
Matteo Lepur
Zihui Ouyang
G. Sgarbi
31
6
0
22 Dec 2019
Bayesian causal inference via probabilistic program synthesis
Bayesian causal inference via probabilistic program synthesis
Sam Witty
Alexander K. Lew
David D. Jensen
Vikash K. Mansinghka
83
3
0
30 Oct 2019
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic
  Programs with Stochastic Support
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
70
20
0
29 Oct 2019
Attention for Inference Compilation
Attention for Inference Compilation
William Harvey
Andreas Munk
A. G. Baydin
Alexander Bergholm
Frank Wood
57
9
0
25 Oct 2019
Probabilistic Surrogate Networks for Simulators with Unbounded
  Randomness
Probabilistic Surrogate Networks for Simulators with Unbounded Randomness
Andreas Munk
Berend Zwartsenberg
Adam Scibior
A. G. Baydin
Andrew Stewart
G. Fernlund
A. Poursartip
Frank Wood
TPM
66
4
0
25 Oct 2019
Amortized Rejection Sampling in Universal Probabilistic Programming
Amortized Rejection Sampling in Universal Probabilistic Programming
Saeid Naderiparizi
Adam Scibior
Andreas Munk
Mehrdad Ghadiri
A. G. Baydin
...
R. Zinkov
Philip Torr
Tom Rainforth
Yee Whye Teh
Frank Wood
69
7
0
20 Oct 2019
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic
  Programming
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming
Yura N. Perov
L. Graham
Kostis Gourgoulias
Jonathan G. Richens
Ciarán M. Gilligan-Lee
Adam Baker
Saurabh Johri
LRM
60
17
0
17 Oct 2019
Static Analysis for Probabilistic Programs
Static Analysis for Probabilistic Programs
Ryan Bernstein
TPM
58
20
0
10 Sep 2019
Towards Verified Stochastic Variational Inference for Probabilistic
  Programs
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
70
26
0
20 Jul 2019
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Feras A. Saad
Marco F. Cusumano-Towner
Ulrich Schaechtle
Martin Rinard
Vikash K. Mansinghka
58
62
0
14 Jul 2019
Probabilistic programming for birth-death models of evolution using an
  alive particle filter with delayed sampling
Probabilistic programming for birth-death models of evolution using an alive particle filter with delayed sampling
J. Kudlicka
Lawrence M. Murray
F. Ronquist
Thomas B. Schon
63
10
0
10 Jul 2019
On Open-Universe Causal Reasoning
On Open-Universe Causal Reasoning
D. Ibeling
Thomas Icard
LRMAI4CE
49
9
0
04 Jul 2019
Deployable probabilistic programming
Deployable probabilistic programming
David Tolpin
TPM
104
7
0
20 Jun 2019
Declarative Learning-Based Programming as an Interface to AI Systems
Declarative Learning-Based Programming as an Interface to AI Systems
Parisa Kordjamshidi
Dan Roth
Kristian Kersting
74
4
0
18 Jun 2019
People infer recursive visual concepts from just a few examples
People infer recursive visual concepts from just a few examples
Brenden M. Lake
Steven T Piantadosi
BDLDRL
57
41
0
17 Apr 2019
Tea: A High-level Language and Runtime System for Automating Statistical
  Analysis
Tea: A High-level Language and Runtime System for Automating Statistical Analysis
Eunice Jun
Maureen Daum
Jared Roesch
Sarah E. Chasins
E. Berger
René Just
Katharina Reinecke
65
36
0
10 Apr 2019
The Random Conditional Distribution for Higher-Order Probabilistic
  Inference
The Random Conditional Distribution for Higher-Order Probabilistic Inference
Zenna Tavares
Xin Zhang
Edgar Minaysan
Javier Burroni
Rajesh Ranganath
Armando Solar-Lezama
45
9
0
25 Mar 2019
Applying Probabilistic Programming to Affective Computing
Applying Probabilistic Programming to Affective Computing
Desmond C. Ong
Harold Soh
Jamil Zaki
Noah D. Goodman
122
20
0
15 Mar 2019
LF-PPL: A Low-Level First Order Probabilistic Programming Language for
  Non-Differentiable Models
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models
Yuanshuo Zhou
Bradley Gram-Hansen
Tobias Kohn
Tom Rainforth
Hongseok Yang
Frank Wood
80
25
0
06 Mar 2019
Soft Constraints for Inference with Declarative Knowledge
Soft Constraints for Inference with Declarative Knowledge
Zenna Tavares
Javier Burroni
Edgar Minaysan
Armando Solar-Lezama
Rajesh Ranganath
41
2
0
16 Jan 2019
Whittemore: An embedded domain specific language for causal programming
Whittemore: An embedded domain specific language for causal programming
Joshua Brulé
16
1
0
21 Dec 2018
Traceability of Deep Neural Networks
Traceability of Deep Neural Networks
Vincent Aravantinos
Frederik Diehl
51
12
0
17 Dec 2018
A Generalization of Hierarchical Exchangeability on Trees to Directed
  Acyclic Graphs
A Generalization of Hierarchical Exchangeability on Trees to Directed Acyclic Graphs
Paul Jung
Jiho Lee
S. Staton
Hongseok Yang
45
9
0
15 Dec 2018
Doubly Bayesian Optimization
Alexander Lavin
38
0
0
11 Dec 2018
Bayesian Layers: A Module for Neural Network Uncertainty
Bayesian Layers: A Module for Neural Network Uncertainty
Dustin Tran
Michael W. Dusenberry
Mark van der Wilk
Danijar Hafner
UQCVBDL
131
124
0
10 Dec 2018
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
I. Seaman
Jan-Willem van de Meent
David Wingate
LRM
83
13
0
04 Dec 2018
Probabilistic Programming with Densities in SlicStan: Efficient,
  Flexible and Deterministic
Probabilistic Programming with Densities in SlicStan: Efficient, Flexible and Deterministic
Maria I. Gorinova
Andrew D. Gordon
Charles Sutton
77
24
0
02 Nov 2018
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDLGP
162
1,056
0
18 Oct 2018
Automated learning with a probabilistic programming language: Birch
Automated learning with a probabilistic programming language: Birch
Lawrence M. Murray
Thomas B. Schon
76
63
0
02 Oct 2018
Inference Over Programs That Make Predictions
Inference Over Programs That Make Predictions
Yura N. Perov
35
2
0
02 Oct 2018
Compiling Stan to Generative Probabilistic Languages and Extension to
  Deep Probabilistic Programming
Compiling Stan to Generative Probabilistic Languages and Extension to Deep Probabilistic Programming
Guillaume Baudart
Javier Burroni
Martin Hirzel
Louis Mandel
Avraham Shinnar
BDL
40
4
0
30 Sep 2018
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
88
200
0
27 Sep 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the
  Standard Model
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank Wood
90
31
0
20 Jul 2018
Probabilistic Inference Using Generators - The Statues Algorithm
Probabilistic Inference Using Generators - The Statues Algorithm
P. Denis
34
2
0
24 Jun 2018
Discrete-Continuous Mixtures in Probabilistic Programming: Generalized
  Semantics and Inference Algorithms
Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms
Yi Wu
Siddharth Srivastava
N. Hay
S. Du
Stuart J. Russell
68
25
0
06 Jun 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CENAI
797
3,129
0
04 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
125
32
0
01 Jun 2018
Omega: An Architecture for AI Unification
Omega: An Architecture for AI Unification
Eray Özkural
AI4CE
45
1
0
16 May 2018
On the Conditional Logic of Simulation Models
On the Conditional Logic of Simulation Models
D. Ibeling
Thomas Icard
LRM
133
9
0
08 May 2018
Hamiltonian Monte Carlo for Probabilistic Programs with Discontinuities
Hamiltonian Monte Carlo for Probabilistic Programs with Discontinuities
Bradley Gram-Hansen
Yuanshuo Zhou
Tobias Kohn
Tom Rainforth
Hongseok Yang
Frank Wood
24
3
0
07 Apr 2018
Nesting Probabilistic Programs
Nesting Probabilistic Programs
Tom Rainforth
TPM
68
24
0
16 Mar 2018
SERKET: An Architecture for Connecting Stochastic Models to Realize a
  Large-Scale Cognitive Model
SERKET: An Architecture for Connecting Stochastic Models to Realize a Large-Scale Cognitive Model
Tomoaki Nakamura
Takayuki Nagai
T. Taniguchi
3DV
62
44
0
04 Dec 2017
One Model for the Learning of Language
One Model for the Learning of Language
Yu’an Yang
55
51
0
16 Nov 2017
Building machines that adapt and compute like brains
Building machines that adapt and compute like brains
Brenden M. Lake
J. Tenenbaum
AI4CEFedMLNAIAILaw
331
887
0
11 Nov 2017
On Nesting Monte Carlo Estimators
On Nesting Monte Carlo Estimators
Tom Rainforth
R. Cornish
Hongseok Yang
Andrew Warrington
Frank Wood
151
132
0
18 Sep 2017
Abstractions for AI-Based User Interfaces and Systems
Abstractions for AI-Based User Interfaces and Systems
Alex Renda
Harrison Goldstein
Sarah Bird
Chris Quirk
Adrian Sampson
AI4CELLMAG
21
1
0
14 Sep 2017
Exact Inference for Relational Graphical Models with Interpreted
  Functions: Lifted Probabilistic Inference Modulo Theories
Exact Inference for Relational Graphical Models with Interpreted Functions: Lifted Probabilistic Inference Modulo Theories
Rodrigo de Salvo Braz
Ciaran O'Reilly
TPM
18
7
0
04 Sep 2017
TensorLog: Deep Learning Meets Probabilistic DBs
TensorLog: Deep Learning Meets Probabilistic DBs
William W. Cohen
Fan Yang
Kathryn Mazaitis
NAI
76
41
0
17 Jul 2017
Previous
1234
Next