ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.3255
  4. Cited By
Church: a language for generative models
v1v2 (latest)

Church: a language for generative models

13 June 2012
Noah D. Goodman
Vikash K. Mansinghka
Daniel M. Roy
Keith Bonawitz
J. Tenenbaum
ArXiv (abs)PDFHTML

Papers citing "Church: a language for generative models"

50 / 178 papers shown
Title
Bayesian Optimization for Probabilistic Programs
Bayesian Optimization for Probabilistic Programs
Tom Rainforth
T. Le
Jan-Willem van de Meent
Michael A. Osborne
Frank Wood
TPM
72
27
0
13 Jul 2017
Learning Disentangled Representations with Semi-Supervised Deep
  Generative Models
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRLCoGe
176
363
0
01 Jun 2017
Probabilistic Program Abstractions
Probabilistic Program Abstractions
Steven Holtzen
T. Millstein
Guy Van den Broeck
40
15
0
28 May 2017
RankPL: A Qualitative Probabilistic Programming Language
RankPL: A Qualitative Probabilistic Programming Language
Tjitze Rienstra
LRM
13
2
0
19 May 2017
Probabilistic programs for inferring the goals of autonomous agents
Probabilistic programs for inferring the goals of autonomous agents
Marco F. Cusumano-Towner
Alexey Radul
David Wingate
Vikash K. Mansinghka
143
15
0
17 Apr 2017
Deriving Probability Density Functions from Probabilistic Functional
  Programs
Deriving Probability Density Functions from Probabilistic Functional Programs
Sooraj Bhat
J. Borgström
Andrew D. Gordon
Claudio V. Russo
48
46
0
04 Apr 2017
Quantifying Program Bias
Quantifying Program Bias
Aws Albarghouthi
Loris Dántoni
Samuel Drews
A. Nori
84
12
0
17 Feb 2017
Bayesian Probabilistic Numerical Methods
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
106
166
0
13 Feb 2017
Deep Probabilistic Programming
Deep Probabilistic Programming
Dustin Tran
Matthew D. Hoffman
Rif A. Saurous
E. Brevdo
Kevin Patrick Murphy
David M. Blei
BDL
139
193
0
13 Jan 2017
A Convenient Category for Higher-Order Probability Theory
A Convenient Category for Higher-Order Probability Theory
C. Heunen
Ohad Kammar
S. Staton
Hongseok Yang
99
161
0
10 Jan 2017
Encapsulating models and approximate inference programs in probabilistic
  modules
Encapsulating models and approximate inference programs in probabilistic modules
Marco F. Cusumano-Towner
Vikash K. Mansinghka
TPM
12
2
0
14 Dec 2016
On the Pitfalls of Nested Monte Carlo
On the Pitfalls of Nested Monte Carlo
Tom Rainforth
R. Cornish
Hongseok Yang
Frank Wood
62
9
0
03 Dec 2016
Probabilistic Neural Programs
Probabilistic Neural Programs
Kenton W. Murray
Jayant Krishnamurthy
BDLNAI
29
4
0
02 Dec 2016
The Emergence of Organizing Structure in Conceptual Representation
The Emergence of Organizing Structure in Conceptual Representation
Brenden M. Lake
Neil D. Lawrence
J. Tenenbaum
AI4CE
93
17
0
28 Nov 2016
Programs as Black-Box Explanations
Programs as Black-Box Explanations
Sameer Singh
Marco Tulio Ribeiro
Carlos Guestrin
FAtt
73
55
0
22 Nov 2016
Inference Compilation and Universal Probabilistic Programming
Inference Compilation and Universal Probabilistic Programming
T. Le
A. G. Baydin
Frank Wood
UQCV
219
143
0
31 Oct 2016
Edward: A library for probabilistic modeling, inference, and criticism
Edward: A library for probabilistic modeling, inference, and criticism
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
113
300
0
31 Oct 2016
Fairness as a Program Property
Fairness as a Program Property
Aws Albarghouthi
Loris Dántoni
Samuel Drews
A. Nori
FaML
40
15
0
19 Oct 2016
Deep Amortized Inference for Probabilistic Programs
Deep Amortized Inference for Probabilistic Programs
Daniel E. Ritchie
Paul Horsfall
Noah D. Goodman
TPM
111
82
0
18 Oct 2016
Probabilistic Safety Programs
Probabilistic Safety Programs
Ashish Kapoor
Debadeepta Dey
S. Shah
20
0
0
17 Oct 2016
Gray-box inference for structured Gaussian process models
Gray-box inference for structured Gaussian process models
P. Galliani
Amir Dezfouli
Edwin V. Bonilla
Novi Quadrianto
BDL
31
4
0
14 Sep 2016
Generic Inference in Latent Gaussian Process Models
Generic Inference in Latent Gaussian Process Models
Edwin V. Bonilla
K. Krauth
Amir Dezfouli
BDL
66
28
0
02 Sep 2016
TerpreT: A Probabilistic Programming Language for Program Induction
TerpreT: A Probabilistic Programming Language for Program Induction
Alexander L. Gaunt
Marc Brockschmidt
Rishabh Singh
Nate Kushman
Pushmeet Kohli
Jonathan Taylor
Daniel Tarlow
91
124
0
15 Aug 2016
Automatic Generation of Probabilistic Programming from Time Series Data
Automatic Generation of Probabilistic Programming from Time Series Data
Anh Tong
Jaesik Choi
AI4TS
41
6
0
04 Jul 2016
Swift: Compiled Inference for Probabilistic Programming Languages
Swift: Compiled Inference for Probabilistic Programming Languages
Yi Wu
Lei Li
Stuart J. Russell
Rastislav Bodík
96
29
0
30 Jun 2016
Semantic Parsing to Probabilistic Programs for Situated Question
  Answering
Semantic Parsing to Probabilistic Programs for Situated Question Answering
Jayant Krishnamurthy
Oyvind Tafjord
Aniruddha Kembhavi
77
25
0
22 Jun 2016
Spreadsheet Probabilistic Programming
Spreadsheet Probabilistic Programming
Mike Wu
Yura N. Perov
Frank Wood
Hongseok Yang
44
3
0
14 Jun 2016
Measuring the reliability of MCMC inference with bidirectional Monte
  Carlo
Measuring the reliability of MCMC inference with bidirectional Monte Carlo
Roger C. Grosse
Siddharth Ancha
Daniel M. Roy
121
27
0
07 Jun 2016
Applications of Probabilistic Programming (Master's thesis, 2015)
Applications of Probabilistic Programming (Master's thesis, 2015)
Yura N. Perov
55
4
0
31 May 2016
Probabilistic Inference Modulo Theories
Probabilistic Inference Modulo Theories
Rodrigo de Salvo Braz
Ciaran O'Reilly
Vibhav Gogate
R. Dechter
LRM
39
9
0
26 May 2016
Programming with a Differentiable Forth Interpreter
Programming with a Differentiable Forth Interpreter
Matko Bosnjak
Tim Rocktaschel
Jason Naradowsky
Sebastian Riedel
92
303
0
21 May 2016
Composing inference algorithms as program transformations
Composing inference algorithms as program transformations
R. Zinkov
Chung-chieh Shan
TPM
81
30
0
06 Mar 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
133
719
0
02 Mar 2016
Bachelor's thesis on generative probabilistic programming (in Russian
  language, June 2014)
Bachelor's thesis on generative probabilistic programming (in Russian language, June 2014)
Yura N. Perov
BDL
18
0
0
26 Jan 2016
Semantics for probabilistic programming: higher-order functions,
  continuous distributions, and soft constraints
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints
S. Staton
Hongseok Yang
C. Heunen
Ohad Kammar
Frank Wood
80
136
0
19 Jan 2016
BayesDB: A probabilistic programming system for querying the probable
  implications of data
BayesDB: A probabilistic programming system for querying the probable implications of data
Vikash K. Mansinghka
R. Tibbetts
Jay Baxter
Pat Shafto
Baxter S. Eaves
62
38
0
15 Dec 2015
Lazy Factored Inference for Functional Probabilistic Programming
Lazy Factored Inference for Functional Probabilistic Programming
Avi Pfeffer
Brian E. Ruttenberg
A. Sliva
Michael Howard
Glenn Takata
TPM
46
2
0
11 Sep 2015
Coarse-to-Fine Sequential Monte Carlo for Probabilistic Programs
Coarse-to-Fine Sequential Monte Carlo for Probabilistic Programs
Andreas Stuhlmuller
Robert D. Hawkins
N. Siddharth
Noah D. Goodman
62
9
0
09 Sep 2015
C3: Lightweight Incrementalized MCMC for Probabilistic Programs using
  Continuations and Callsite Caching
C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching
Daniel E. Ritchie
Andreas Stuhlmuller
Noah D. Goodman
78
30
0
07 Sep 2015
Stochastic gradient variational Bayes for gamma approximating
  distributions
Stochastic gradient variational Bayes for gamma approximating distributions
David A. Knowles
BDL
135
51
0
04 Sep 2015
Black-Box Policy Search with Probabilistic Programs
Black-Box Policy Search with Probabilistic Programs
Jan-Willem van de Meent
Brooks Paige
David Tolpin
Frank Wood
109
24
0
16 Jul 2015
A New Approach to Probabilistic Programming Inference
A New Approach to Probabilistic Programming Inference
Frank Wood
Jan-Willem van de Meent
Vikash K. Mansinghka
89
347
0
03 Jul 2015
Automatic Variational Inference in Stan
Automatic Variational Inference in Stan
A. Kucukelbir
Rajesh Ranganath
Andrew Gelman
David M. Blei
BDL
99
233
0
10 Jun 2015
Programming with models: writing statistical algorithms for general
  model structures with NIMBLE
Programming with models: writing statistical algorithms for general model structures with NIMBLE
P. de Valpine
Daniel Turek
C. Paciorek
Clifford Anderson-Bergman
D. Lang
Rastislav Bodík
88
858
0
19 May 2015
Hinge-Loss Markov Random Fields and Probabilistic Soft Logic
Hinge-Loss Markov Random Fields and Probabilistic Soft Logic
Stephen H. Bach
Matthias Broecheler
Bert Huang
Lise Getoor
TPMAI4CE
133
389
0
17 May 2015
Maximum a Posteriori Estimation by Search in Probabilistic Programs
Maximum a Posteriori Estimation by Search in Probabilistic Programs
David Tolpin
Frank Wood
TPM
65
12
0
26 Apr 2015
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation
  Messages
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages
Wittawat Jitkrittum
Arthur Gretton
N. Heess
S. M. Ali Eslami
Balaji Lakshminarayanan
Dino Sejdinovic
Z. Szabó
122
33
0
09 Mar 2015
Path Finding under Uncertainty through Probabilistic Inference
Path Finding under Uncertainty through Probabilistic Inference
David Tolpin
Brooks Paige
Jan-Willem van de Meent
Frank Wood
TPM
64
0
0
25 Feb 2015
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
Jan-Willem van de Meent
Hongseok Yang
Vikash K. Mansinghka
Frank Wood
76
33
0
27 Jan 2015
Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs
Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs
David Tolpin
Jan-Willem van de Meent
Brooks Paige
Frank Wood
59
1
0
22 Jan 2015
Previous
1234
Next