ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.3255
  4. Cited By
Church: a language for generative models
v1v2 (latest)

Church: a language for generative models

13 June 2012
Noah D. Goodman
Vikash K. Mansinghka
Daniel M. Roy
Keith Bonawitz
J. Tenenbaum
ArXiv (abs)PDFHTML

Papers citing "Church: a language for generative models"

50 / 178 papers shown
Title
SatelliteFormula: Multi-Modal Symbolic Regression from Remote Sensing Imagery for Physics Discovery
SatelliteFormula: Multi-Modal Symbolic Regression from Remote Sensing Imagery for Physics Discovery
Zhenyu Yu
Mohd Yamani Idna Idris
Pei Wang
Yuelong Xia
Fei Ma
Rizwan Qureshi
40
0
0
06 Jun 2025
LLM-Guided Probabilistic Program Induction for POMDP Model Estimation
LLM-Guided Probabilistic Program Induction for POMDP Model Estimation
Aidan Curtis
Hao Tang
Thiago Veloso
Kevin Ellis
Joshua B. Tenenbaum
Tomás Lozano-Pérez
Leslie Pack Kaelbling
397
1
0
04 May 2025
A Distribution Semantics for Probabilistic Term Rewriting
A Distribution Semantics for Probabilistic Term Rewriting
Germán Vidal
79
0
0
19 Oct 2024
Building Machines that Learn and Think with People
Building Machines that Learn and Think with People
Katherine M. Collins
Ilia Sucholutsky
Umang Bhatt
Kartik Chandra
Lionel Wong
...
Mark K. Ho
Vikash K. Mansinghka
Adrian Weller
Joshua B. Tenenbaum
Thomas Griffiths
133
38
0
22 Jul 2024
Element-Free Probability Distributions and Random Partitions
Element-Free Probability Distributions and Random Partitions
Victor Blanchi
Hugo Paquet
29
1
0
27 May 2024
Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable
  AI Systems
Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems
David Dalrymple
Joar Skalse
Yoshua Bengio
Stuart J. Russell
Max Tegmark
...
Clark Barrett
Ding Zhao
Zhi-Xuan Tan
Jeannette Wing
Joshua Tenenbaum
130
62
0
10 May 2024
Foundation Model Sherpas: Guiding Foundation Models through Knowledge
  and Reasoning
Foundation Model Sherpas: Guiding Foundation Models through Knowledge and Reasoning
D. Bhattacharjya
Junkyu Lee
Don Joven Agravante
Balaji Ganesan
Radu Marinescu
LLMAG
50
1
0
02 Feb 2024
Recovering Mental Representations from Large Language Models with Markov
  Chain Monte Carlo
Recovering Mental Representations from Large Language Models with Markov Chain Monte Carlo
Jian-Qiao Zhu
Haijiang Yan
Thomas Griffiths
48
3
0
30 Jan 2024
Exploring the hierarchical structure of human plans via program
  generation
Exploring the hierarchical structure of human plans via program generation
Carlos G. Correa
Sophia Sanborn
Mark K. Ho
Frederick Callaway
Nathaniel D. Daw
Thomas Griffiths
70
11
0
30 Nov 2023
Rethinking Variational Inference for Probabilistic Programs with
  Stochastic Support
Rethinking Variational Inference for Probabilistic Programs with Stochastic Support
Tim Reichelt
C. Ong
Tom Rainforth
61
2
0
01 Nov 2023
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs
  with Stochastic Support
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs with Stochastic Support
Tim Reichelt
C.-H. Luke Ong
Tom Rainforth
59
0
0
23 Oct 2023
Worst-Case Analysis is Maximum-A-Posteriori Estimation
Worst-Case Analysis is Maximum-A-Posteriori Estimation
Hongjun Wu
Di Wang
41
0
0
15 Oct 2023
A Heavy-Tailed Algebra for Probabilistic Programming
A Heavy-Tailed Algebra for Probabilistic Programming
Feynman T. Liang
Liam Hodgkinson
Michael W. Mahoney
67
3
0
15 Jun 2023
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
78
0
0
10 Jun 2023
Human-like Few-Shot Learning via Bayesian Reasoning over Natural
  Language
Human-like Few-Shot Learning via Bayesian Reasoning over Natural Language
Kevin Ellis
BDLLRM
68
16
0
05 Jun 2023
Evaluating statistical language models as pragmatic reasoners
Evaluating statistical language models as pragmatic reasoners
Benjamin Lipkin
L. Wong
Gabriel Grand
J. Tenenbaum
133
15
0
01 May 2023
Meta-Learned Models of Cognition
Meta-Learned Models of Cognition
Marcel Binz
Ishita Dasgupta
Akshay K. Jagadish
M. Botvinick
Jane X. Wang
Eric Schulz
94
27
0
12 Apr 2023
Declarative Probabilistic Logic Programming in Discrete-Continuous
  Domains
Declarative Probabilistic Logic Programming in Discrete-Continuous Domains
Pedro Zuidberg Dos Martires
Luc de Raedt
Angelika Kimmig
94
4
0
21 Feb 2023
Thermodynamic AI and the fluctuation frontier
Thermodynamic AI and the fluctuation frontier
Patrick J. Coles
Collin Szczepanski
Denis Melanson
Kaelan Donatella
Antonio J. Martinez
Faris M. Sbahi
AI4CE
77
19
0
09 Feb 2023
Counterfactual Identifiability of Bijective Causal Models
Counterfactual Identifiability of Bijective Causal Models
Arash Nasr-Esfahany
MohammadIman Alizadeh
Devavrat Shah
CMLBDL
113
27
0
04 Feb 2023
Automatically Marginalized MCMC in Probabilistic Programming
Automatically Marginalized MCMC in Probabilistic Programming
Jinlin Lai
Javier Burroni
Hui Guan
Daniel Sheldon
80
3
0
01 Feb 2023
Nonparametric Involutive Markov Chain Monte Carlo
Nonparametric Involutive Markov Chain Monte Carlo
Carol Mak
Fabian Zaiser
C. Ong
65
1
0
02 Nov 2022
Nonlinear System Identification: Learning while respecting physical
  models using a sequential Monte Carlo method
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
50
11
0
26 Oct 2022
Swift Markov Logic for Probabilistic Reasoning on Knowledge Graphs
Swift Markov Logic for Probabilistic Reasoning on Knowledge Graphs
Luigi Bellomarini
Eleonora Laurenza
Emanuel Sallinger
Evgeny Sherkhonov
47
0
0
01 Oct 2022
Dr. Neurosymbolic, or: How I Learned to Stop Worrying and Accept
  Statistics
Dr. Neurosymbolic, or: How I Learned to Stop Worrying and Accept Statistics
Masataro Asai
75
0
0
08 Sep 2022
Smoothness Analysis for Probabilistic Programs with Application to
  Optimised Variational Inference
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
Wonyeol Lee
Xavier Rival
Hongseok Yang
96
10
0
22 Aug 2022
Tensor Program Optimization with Probabilistic Programs
Tensor Program Optimization with Probabilistic Programs
Junru Shao
Xiyou Zhou
Siyuan Feng
Bohan Hou
Ruihang Lai
Hongyi Jin
Wuwei Lin
Masahiro Masuda
Cody Hao Yu
Tianqi Chen
85
31
0
26 May 2022
Foundation Posteriors for Approximate Probabilistic Inference
Foundation Posteriors for Approximate Probabilistic Inference
Mike Wu
Noah D. Goodman
UQCV
94
6
0
19 May 2022
Guaranteed Bounds for Posterior Inference in Universal Probabilistic
  Programming
Guaranteed Bounds for Posterior Inference in Universal Probabilistic Programming
Raven Beutner
Luke Ong
Fabian Zaiser
62
12
0
06 Apr 2022
Higher-Order Generalization Bounds: Learning Deep Probabilistic Programs
  via PAC-Bayes Objectives
Higher-Order Generalization Bounds: Learning Deep Probabilistic Programs via PAC-Bayes Objectives
J. Warrell
M. Gerstein
GP
49
1
0
30 Mar 2022
Mixed Nondeterministic-Probabilistic Automata: Blending graphical
  probabilistic models with nondeterminism
Mixed Nondeterministic-Probabilistic Automata: Blending graphical probabilistic models with nondeterminism
A. Benveniste
Jean-Baptiste Raclet
TPM
47
1
0
19 Jan 2022
Programming with Neural Surrogates of Programs
Programming with Neural Surrogates of Programs
Alex Renda
Yi Ding
Michael Carbin
36
4
0
12 Dec 2021
Unifying AI Algorithms with Probabilistic Programming using Implicitly
  Defined Representations
Unifying AI Algorithms with Probabilistic Programming using Implicitly Defined Representations
Avi Pfeffer
M. Harradon
Joseph Campolongo
S. Cvijic
46
2
0
05 Oct 2021
Supervised Bayesian Specification Inference from Demonstrations
Supervised Bayesian Specification Inference from Demonstrations
Ankit J. Shah
Pritish Kamath
Shen Li
Patrick L. Craven
Kevin J. Landers
Kevin B. Oden
J. Shah
122
3
0
06 Jul 2021
Nonparametric Hamiltonian Monte Carlo
Nonparametric Hamiltonian Monte Carlo
Carol Mak
Fabian Zaiser
C.-H. Luke Ong
58
6
0
18 Jun 2021
Expectation Programming: Adapting Probabilistic Programming Systems to
  Estimate Expectations Efficiently
Expectation Programming: Adapting Probabilistic Programming Systems to Estimate Expectations Efficiently
Tim Reichelt
Adam Goliñski
C.-H. Luke Ong
Tom Rainforth
TPM
60
0
0
09 Jun 2021
A Whole Brain Probabilistic Generative Model: Toward Realizing Cognitive
  Architectures for Developmental Robots
A Whole Brain Probabilistic Generative Model: Toward Realizing Cognitive Architectures for Developmental Robots
T. Taniguchi
Hiroshi Yamakawa
Takayuki Nagai
Kenji Doya
M. Sakagami
Masahiro Suzuki
Tomoaki Nakamura
Akira Taniguchi
72
24
0
15 Mar 2021
Meta-Learning an Inference Algorithm for Probabilistic Programs
Meta-Learning an Inference Algorithm for Probabilistic Programs
Gwonsoo Che
Hongseok Yang
TPM
35
1
0
01 Mar 2021
Learning Proposals for Probabilistic Programs with Inference Combinators
Learning Proposals for Probabilistic Programs with Inference Combinators
Sam Stites
Heiko Zimmermann
Hao Wu
Eli Sennesh
Jan-Willem van de Meent
NAI
84
16
0
01 Mar 2021
SBI: A Simulation-Based Test of Identifiability for Bayesian Causal
  Inference
SBI: A Simulation-Based Test of Identifiability for Bayesian Causal Inference
Sam Witty
David D. Jensen
Vikash K. Mansinghka
CML
71
3
0
23 Feb 2021
Automatic variational inference with cascading flows
Automatic variational inference with cascading flows
L. Ambrogioni
Gianluigi Silvestri
Marcel van Gerven
TPMBDL
46
10
0
09 Feb 2021
Universal Policies for Software-Defined MDPs
Universal Policies for Software-Defined MDPs
Daniel Selsam
Jesse Michael Han
L. D. Moura
Patrice Godefroid
47
2
0
21 Dec 2020
Modeling Content and Context with Deep Relational Learning
Modeling Content and Context with Deep Relational Learning
Maria Leonor Pacheco
Dan Goldwasser
NAI
105
34
0
20 Oct 2020
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
  Programmed Deep Kernels
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic Programmed Deep Kernels
Alexander Lavin
BDLMedIm
79
9
0
16 Sep 2020
PClean: Bayesian Data Cleaning at Scale with Domain-Specific
  Probabilistic Programming
PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming
Alexander K. Lew
Monica Agrawal
David Sontag
Vikash K. Mansinghka
134
28
0
23 Jul 2020
Automating Involutive MCMC using Probabilistic and Differentiable
  Programming
Automating Involutive MCMC using Probabilistic and Differentiable Programming
Marco F. Cusumano-Towner
Alexander K. Lew
Vikash K. Mansinghka
74
17
0
20 Jul 2020
Smart Choices and the Selection Monad
Smart Choices and the Selection Monad
M. Abadi
G. Plotkin
79
4
0
17 Jul 2020
Symbolic Logic meets Machine Learning: A Brief Survey in Infinite
  Domains
Symbolic Logic meets Machine Learning: A Brief Survey in Infinite Domains
Vaishak Belle
NAILRM
108
36
0
15 Jun 2020
Simulation-Based Inference for Global Health Decisions
Simulation-Based Inference for Global Health Decisions
Christian Schroeder de Witt
Bradley Gram-Hansen
Nantas Nardelli
Andrew Gambardella
R. Zinkov
...
N. Siddharth
A. B. Espinosa-González
A. Darzi
Philip Torr
A. G. Baydin
AI4CE
61
5
0
14 May 2020
Stochastically Differentiable Probabilistic Programs
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
37
0
0
02 Mar 2020
1234
Next