ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1402.4304
  4. Cited By
Automatic Construction and Natural-Language Description of Nonparametric
  Regression Models
v1v2v3 (latest)

Automatic Construction and Natural-Language Description of Nonparametric Regression Models

18 February 2014
J. Lloyd
David Duvenaud
Roger C. Grosse
J. Tenenbaum
Zoubin Ghahramani
ArXiv (abs)PDFHTML

Papers citing "Automatic Construction and Natural-Language Description of Nonparametric Regression Models"

50 / 80 papers shown
Title
Exploratory Visual Analysis for Increasing Data Readiness in Artificial
  Intelligence Projects
Exploratory Visual Analysis for Increasing Data Readiness in Artificial Intelligence Projects
Mattias Tiger
Daniel Jakobsson
Anders Ynnerman
Fredrik Heintz
Daniel Jonsson
53
0
0
05 Sep 2024
On the Laplace Approximation as Model Selection Criterion for Gaussian
  Processes
On the Laplace Approximation as Model Selection Criterion for Gaussian Processes
Andreas Besginow
J. D. Hüwel
Thomas Pawellek
Christian Beecks
Markus Lange-Hegermann
35
0
0
14 Mar 2024
Automated Statistical Model Discovery with Language Models
Automated Statistical Model Discovery with Language Models
Michael Y. Li
Emily B. Fox
Noah D. Goodman
89
19
0
27 Feb 2024
Uncertainty-Aware Calibration of a Hot-Wire Anemometer With Gaussian
  Process Regression
Uncertainty-Aware Calibration of a Hot-Wire Anemometer With Gaussian Process Regression
Rubén A. García-Ruiz
J. Blanco-Claraco
J. López-Martínez
Á. Callejón-Ferre
18
7
0
16 Jan 2024
Learning material synthesis-process-structure-property relationship by
  data fusion: Bayesian Coregionalization N-Dimensional Piecewise Function
  Learning
Learning material synthesis-process-structure-property relationship by data fusion: Bayesian Coregionalization N-Dimensional Piecewise Function Learning
A. Kusne
A. McDannald
Brian L. DeCost
55
2
0
10 Nov 2023
On the Identifiability and Interpretability of Gaussian Process Models
On the Identifiability and Interpretability of Gaussian Process Models
Jiawen Chen
W. Mu
Yun Li
Didong Li
37
3
0
25 Oct 2023
A Primer on Bayesian Neural Networks: Review and Debates
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDLAAML
103
20
0
28 Sep 2023
Sequential Monte Carlo Learning for Time Series Structure Discovery
Sequential Monte Carlo Learning for Time Series Structure Discovery
Feras A. Saad
Brian Patton
Matt Hoffman
Rif A. Saurous
Vikash K. Mansinghka
AI4TS
51
11
0
13 Jul 2023
Beyond Intuition, a Framework for Applying GPs to Real-World Data
Beyond Intuition, a Framework for Applying GPs to Real-World Data
K. Tazi
J. Lin
Ross Viljoen
A. Gardner
S. T. John
Hong Ge
Richard Turner
GP
55
4
0
06 Jul 2023
Amortized Inference for Gaussian Process Hyperparameters of Structured
  Kernels
Amortized Inference for Gaussian Process Hyperparameters of Structured Kernels
M. Bitzer
Mona Meister
Christoph Zimmer
73
9
0
16 Jun 2023
The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of
  Inductive Biases in Machine Learning
The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
Micah Goldblum
Marc Finzi
K. Rowan
A. Wilson
UQCVFedML
133
43
0
11 Apr 2023
Hierarchical-Hyperplane Kernels for Actively Learning Gaussian Process
  Models of Nonstationary Systems
Hierarchical-Hyperplane Kernels for Actively Learning Gaussian Process Models of Nonstationary Systems
M. Bitzer
Mona Meister
Christoph Zimmer
68
6
0
17 Mar 2023
Gaussian Process Latent Variable Modeling for Few-shot Time Series Forecasting
Gaussian Process Latent Variable Modeling for Few-shot Time Series Forecasting
Yunyao Cheng
Chenjuan Guo
Kai Chen
Kai Zhao
B. Yang
Jiandong Xie
Christian S. Jensen
Feiteng Huang
Kai Zheng
AI4TS
72
1
0
20 Dec 2022
Structural Kernel Search via Bayesian Optimization and Symbolical
  Optimal Transport
Structural Kernel Search via Bayesian Optimization and Symbolical Optimal Transport
M. Bitzer
Mona Meister
Christoph Zimmer
88
9
0
21 Oct 2022
Trust in Language Grounding: a new AI challenge for human-robot teams
Trust in Language Grounding: a new AI challenge for human-robot teams
David M. Bossens
C. Evers
90
1
0
05 Sep 2022
A Survey of Open Source Automation Tools for Data Science Predictions
A Survey of Open Source Automation Tools for Data Science Predictions
Nicholas Hoell
63
0
0
24 Aug 2022
Volatility Based Kernels and Moving Average Means for Accurate
  Forecasting with Gaussian Processes
Volatility Based Kernels and Moving Average Means for Accurate Forecasting with Gaussian Processes
Gregory W. Benton
Wesley J. Maddox
A. Wilson
AI4TS
45
3
0
13 Jul 2022
A Change Dynamic Model for the Online Detection of Gradual Change
A Change Dynamic Model for the Online Detection of Gradual Change
Chris Browne
42
0
0
02 May 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCVBDL
149
58
0
23 Feb 2022
Online Time Series Anomaly Detection with State Space Gaussian Processes
Online Time Series Anomaly Detection with State Space Gaussian Processes
Christian Bock
Franccois-Xavier Aubet
Jan Gasthaus
Andrey Kan
Ming Chen
Laurent Callot
AI4TS
62
8
0
18 Jan 2022
Tisane: Authoring Statistical Models via Formal Reasoning from
  Conceptual and Data Relationships
Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships
Eunice Jun
Audrey Seo
Jeffrey Heer
René Just
143
19
0
07 Jan 2022
Online structural kernel selection for mobile health
Online structural kernel selection for mobile health
Eura Shin
Pedja Klasnja
Susan Murphy
Finale Doshi-Velez
49
1
0
21 Jul 2021
Slow Momentum with Fast Reversion: A Trading Strategy Using Deep
  Learning and Changepoint Detection
Slow Momentum with Fast Reversion: A Trading Strategy Using Deep Learning and Changepoint Detection
Kieran Wood
Stephen J. Roberts
S. Zohren
35
21
0
28 May 2021
Model Selection for Production System via Automated Online Experiments
Model Selection for Production System via Automated Online Experiments
Zhenwen Dai
Praveen Chandar
G. Fazelnia
Ben Carterette
M. Lalmas
64
4
0
27 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCVBDL
137
134
0
14 May 2021
Automating Data Science: Prospects and Challenges
Automating Data Science: Prospects and Challenges
Tijl De Bie
Luc de Raedt
José Hernández-Orallo
Holger H. Hoos
Padhraic Smyth
C. Williams
124
38
0
12 May 2021
The Minecraft Kernel: Modelling correlated Gaussian Processes in the
  Fourier domain
The Minecraft Kernel: Modelling correlated Gaussian Processes in the Fourier domain
F. Simpson
A. Boukouvalas
Václav Cadek
E. Sarkans
N. Durrande
51
3
0
11 Mar 2021
Tractable Computation of Expected Kernels
Tractable Computation of Expected Kernels
Wenzhe Li
Zhe Zeng
Antonio Vergari
Guy Van den Broeck
TPM
54
1
0
21 Feb 2021
Gaussian Process Latent Class Choice Models
Gaussian Process Latent Class Choice Models
G. Sfeir
Filipe Rodrigues
Maya Abou-Zeid
GP
34
12
0
28 Jan 2021
Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior
Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior
Anh Tong
Toan M. Tran
Hung Bui
Jaesik Choi
49
3
0
21 Dec 2020
Scalable Approximate Bayesian Computation for Growing Network Models via
  Extrapolated and Sampled Summaries
Scalable Approximate Bayesian Computation for Growing Network Models via Extrapolated and Sampled Summaries
Louis Raynal
Sixing Chen
Antonietta Mira
J. Onnela
26
3
0
09 Nov 2020
Marginalised Gaussian Processes with Nested Sampling
Marginalised Gaussian Processes with Nested Sampling
F. Simpson
V. Lalchand
C. Rasmussen
GP
131
10
0
30 Oct 2020
Latent-space time evolution of non-intrusive reduced-order models using
  Gaussian process emulation
Latent-space time evolution of non-intrusive reduced-order models using Gaussian process emulation
R. Maulik
T. Botsas
Nesar Ramachandra
L. Mason
Indranil Pan
38
31
0
23 Jul 2020
A Survey of Machine Learning Methods and Challenges for Windows Malware
  Classification
A Survey of Machine Learning Methods and Challenges for Windows Malware Classification
Edward Raff
Charles K. Nicholas
AAML
70
57
0
15 Jun 2020
Provably Efficient Online Hyperparameter Optimization with
  Population-Based Bandits
Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits
Jack Parker-Holder
Vu Nguyen
Stephen J. Roberts
OffRL
155
86
0
06 Feb 2020
Human-like Time Series Summaries via Trend Utility Estimation
Human-like Time Series Summaries via Trend Utility Estimation
Pegah Jandaghi
Jay Pujara
AI4TS
41
1
0
16 Jan 2020
Scalable Variational Bayesian Kernel Selection for Sparse Gaussian
  Process Regression
Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression
T. Teng
Jie Chen
Yehong Zhang
K. H. Low
BDL
78
23
0
05 Dec 2019
Evolving Gaussian Process kernels from elementary mathematical
  expressions
Evolving Gaussian Process kernels from elementary mathematical expressions
Ibai Roman
Roberto Santana
A. Mendiburu
Jose A. Lozano
42
3
0
11 Oct 2019
Inference of modes for linear stochastic processes
Inference of modes for linear stochastic processes
R. MacKay
22
1
0
23 Sep 2019
Heterogeneous Relational Kernel Learning
Heterogeneous Relational Kernel Learning
A. Nguyen
Edward Raff
BDL
27
1
0
24 Aug 2019
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Feras A. Saad
Marco F. Cusumano-Towner
Ulrich Schaechtle
Martin Rinard
Vikash K. Mansinghka
58
62
0
14 Jul 2019
On the Semantic Interpretability of Artificial Intelligence Models
On the Semantic Interpretability of Artificial Intelligence Models
V. S. Silva
André Freitas
Siegfried Handschuh
AI4CE
47
8
0
09 Jul 2019
Learning GPLVM with arbitrary kernels using the unscented transformation
Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel Augusto R. M. A. de Souza
Diego Mesquita
C. L. C. Mattos
Joao P. P. Gomes
61
0
0
03 Jul 2019
Neurally-Guided Structure Inference
Neurally-Guided Structure Inference
Sidi Lu
Jiayuan Mao
J. Tenenbaum
Jiajun Wu
61
7
0
17 Jun 2019
Deep Gaussian Processes with Importance-Weighted Variational Inference
Deep Gaussian Processes with Importance-Weighted Variational Inference
Hugh Salimbeni
Vincent Dutordoir
J. Hensman
M. Deisenroth
BDL
99
44
0
14 May 2019
"Why did you do that?": Explaining black box models with Inductive
  Synthesis
"Why did you do that?": Explaining black box models with Inductive Synthesis
Görkem Paçaci
David Johnson
S. McKeever
A. Hamfelt
35
6
0
17 Apr 2019
Sentiment analysis with genetically evolved Gaussian kernels
Sentiment analysis with genetically evolved Gaussian kernels
Ibai Roman
A. Mendiburu
Roberto Santana
Jose A. Lozano
GP
36
10
0
01 Apr 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
68
240
0
14 Mar 2019
Automated Adaptation Strategies for Stream Learning
Automated Adaptation Strategies for Stream Learning
Rashid Bakirov
Bogdan Gabrys
D. Fay
49
10
0
27 Dec 2018
How to improve the interpretability of kernel learning
How to improve the interpretability of kernel learning
Jinwei Zhao
Qizhou Wang
Yufei Wang
Yu Liu
Zhenghao Shi
Xinhong Hei
FAtt
33
0
0
21 Nov 2018
12
Next