Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1402.4304
Cited By
v1
v2
v3 (latest)
Automatic Construction and Natural-Language Description of Nonparametric Regression Models
18 February 2014
J. Lloyd
David Duvenaud
Roger C. Grosse
J. Tenenbaum
Zoubin Ghahramani
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Automatic Construction and Natural-Language Description of Nonparametric Regression Models"
50 / 80 papers shown
Title
Exploratory Visual Analysis for Increasing Data Readiness in Artificial Intelligence Projects
Mattias Tiger
Daniel Jakobsson
Anders Ynnerman
Fredrik Heintz
Daniel Jonsson
53
0
0
05 Sep 2024
On the Laplace Approximation as Model Selection Criterion for Gaussian Processes
Andreas Besginow
J. D. Hüwel
Thomas Pawellek
Christian Beecks
Markus Lange-Hegermann
35
0
0
14 Mar 2024
Automated Statistical Model Discovery with Language Models
Michael Y. Li
Emily B. Fox
Noah D. Goodman
89
19
0
27 Feb 2024
Uncertainty-Aware Calibration of a Hot-Wire Anemometer With Gaussian Process Regression
Rubén A. García-Ruiz
J. Blanco-Claraco
J. López-Martínez
Á. Callejón-Ferre
18
7
0
16 Jan 2024
Learning material synthesis-process-structure-property relationship by data fusion: Bayesian Coregionalization N-Dimensional Piecewise Function Learning
A. Kusne
A. McDannald
Brian L. DeCost
55
2
0
10 Nov 2023
On the Identifiability and Interpretability of Gaussian Process Models
Jiawen Chen
W. Mu
Yun Li
Didong Li
37
3
0
25 Oct 2023
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
103
20
0
28 Sep 2023
Sequential Monte Carlo Learning for Time Series Structure Discovery
Feras A. Saad
Brian Patton
Matt Hoffman
Rif A. Saurous
Vikash K. Mansinghka
AI4TS
51
11
0
13 Jul 2023
Beyond Intuition, a Framework for Applying GPs to Real-World Data
K. Tazi
J. Lin
Ross Viljoen
A. Gardner
S. T. John
Hong Ge
Richard Turner
GP
55
4
0
06 Jul 2023
Amortized Inference for Gaussian Process Hyperparameters of Structured Kernels
M. Bitzer
Mona Meister
Christoph Zimmer
73
9
0
16 Jun 2023
The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
Micah Goldblum
Marc Finzi
K. Rowan
A. Wilson
UQCV
FedML
133
43
0
11 Apr 2023
Hierarchical-Hyperplane Kernels for Actively Learning Gaussian Process Models of Nonstationary Systems
M. Bitzer
Mona Meister
Christoph Zimmer
68
6
0
17 Mar 2023
Gaussian Process Latent Variable Modeling for Few-shot Time Series Forecasting
Yunyao Cheng
Chenjuan Guo
Kai Chen
Kai Zhao
B. Yang
Jiandong Xie
Christian S. Jensen
Feiteng Huang
Kai Zheng
AI4TS
72
1
0
20 Dec 2022
Structural Kernel Search via Bayesian Optimization and Symbolical Optimal Transport
M. Bitzer
Mona Meister
Christoph Zimmer
88
9
0
21 Oct 2022
Trust in Language Grounding: a new AI challenge for human-robot teams
David M. Bossens
C. Evers
90
1
0
05 Sep 2022
A Survey of Open Source Automation Tools for Data Science Predictions
Nicholas Hoell
63
0
0
24 Aug 2022
Volatility Based Kernels and Moving Average Means for Accurate Forecasting with Gaussian Processes
Gregory W. Benton
Wesley J. Maddox
A. Wilson
AI4TS
45
3
0
13 Jul 2022
A Change Dynamic Model for the Online Detection of Gradual Change
Chris Browne
44
0
0
02 May 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
149
58
0
23 Feb 2022
Online Time Series Anomaly Detection with State Space Gaussian Processes
Christian Bock
Franccois-Xavier Aubet
Jan Gasthaus
Andrey Kan
Ming Chen
Laurent Callot
AI4TS
62
8
0
18 Jan 2022
Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships
Eunice Jun
Audrey Seo
Jeffrey Heer
René Just
143
19
0
07 Jan 2022
Online structural kernel selection for mobile health
Eura Shin
Pedja Klasnja
Susan Murphy
Finale Doshi-Velez
49
1
0
21 Jul 2021
Slow Momentum with Fast Reversion: A Trading Strategy Using Deep Learning and Changepoint Detection
Kieran Wood
Stephen J. Roberts
S. Zohren
35
21
0
28 May 2021
Model Selection for Production System via Automated Online Experiments
Zhenwen Dai
Praveen Chandar
G. Fazelnia
Ben Carterette
M. Lalmas
64
4
0
27 May 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
137
134
0
14 May 2021
Automating Data Science: Prospects and Challenges
Tijl De Bie
Luc de Raedt
José Hernández-Orallo
Holger H. Hoos
Padhraic Smyth
C. Williams
124
38
0
12 May 2021
The Minecraft Kernel: Modelling correlated Gaussian Processes in the Fourier domain
F. Simpson
A. Boukouvalas
Václav Cadek
E. Sarkans
N. Durrande
51
3
0
11 Mar 2021
Tractable Computation of Expected Kernels
Wenzhe Li
Zhe Zeng
Antonio Vergari
Guy Van den Broeck
TPM
54
1
0
21 Feb 2021
Gaussian Process Latent Class Choice Models
G. Sfeir
Filipe Rodrigues
Maya Abou-Zeid
GP
34
12
0
28 Jan 2021
Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior
Anh Tong
Toan M. Tran
Hung Bui
Jaesik Choi
49
3
0
21 Dec 2020
Scalable Approximate Bayesian Computation for Growing Network Models via Extrapolated and Sampled Summaries
Louis Raynal
Sixing Chen
Antonietta Mira
J. Onnela
26
3
0
09 Nov 2020
Marginalised Gaussian Processes with Nested Sampling
F. Simpson
V. Lalchand
C. Rasmussen
GP
131
10
0
30 Oct 2020
Latent-space time evolution of non-intrusive reduced-order models using Gaussian process emulation
R. Maulik
T. Botsas
Nesar Ramachandra
L. Mason
Indranil Pan
38
31
0
23 Jul 2020
A Survey of Machine Learning Methods and Challenges for Windows Malware Classification
Edward Raff
Charles K. Nicholas
AAML
70
57
0
15 Jun 2020
Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits
Jack Parker-Holder
Vu Nguyen
Stephen J. Roberts
OffRL
155
86
0
06 Feb 2020
Human-like Time Series Summaries via Trend Utility Estimation
Pegah Jandaghi
Jay Pujara
AI4TS
41
1
0
16 Jan 2020
Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression
T. Teng
Jie Chen
Yehong Zhang
K. H. Low
BDL
78
23
0
05 Dec 2019
Evolving Gaussian Process kernels from elementary mathematical expressions
Ibai Roman
Roberto Santana
A. Mendiburu
Jose A. Lozano
42
3
0
11 Oct 2019
Inference of modes for linear stochastic processes
R. MacKay
22
1
0
23 Sep 2019
Heterogeneous Relational Kernel Learning
A. Nguyen
Edward Raff
BDL
27
1
0
24 Aug 2019
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Feras A. Saad
Marco F. Cusumano-Towner
Ulrich Schaechtle
Martin Rinard
Vikash K. Mansinghka
58
62
0
14 Jul 2019
On the Semantic Interpretability of Artificial Intelligence Models
V. S. Silva
André Freitas
Siegfried Handschuh
AI4CE
47
8
0
09 Jul 2019
Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel Augusto R. M. A. de Souza
Diego Mesquita
C. L. C. Mattos
Joao P. P. Gomes
61
0
0
03 Jul 2019
Neurally-Guided Structure Inference
Sidi Lu
Jiayuan Mao
J. Tenenbaum
Jiajun Wu
64
7
0
17 Jun 2019
Deep Gaussian Processes with Importance-Weighted Variational Inference
Hugh Salimbeni
Vincent Dutordoir
J. Hensman
M. Deisenroth
BDL
99
44
0
14 May 2019
"Why did you do that?": Explaining black box models with Inductive Synthesis
Görkem Paçaci
David Johnson
S. McKeever
A. Hamfelt
35
6
0
17 Apr 2019
Sentiment analysis with genetically evolved Gaussian kernels
Ibai Roman
A. Mendiburu
Roberto Santana
Jose A. Lozano
GP
36
10
0
01 Apr 2019
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
71
240
0
14 Mar 2019
Automated Adaptation Strategies for Stream Learning
Rashid Bakirov
Bogdan Gabrys
D. Fay
56
10
0
27 Dec 2018
How to improve the interpretability of kernel learning
Jinwei Zhao
Qizhou Wang
Yufei Wang
Yu Liu
Zhenghao Shi
Xinhong Hei
FAtt
33
0
0
21 Nov 2018
1
2
Next