ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1402.4304
  4. Cited By
Automatic Construction and Natural-Language Description of Nonparametric
  Regression Models
v1v2v3 (latest)

Automatic Construction and Natural-Language Description of Nonparametric Regression Models

18 February 2014
J. Lloyd
David Duvenaud
Roger C. Grosse
J. Tenenbaum
Zoubin Ghahramani
ArXiv (abs)PDFHTML

Papers citing "Automatic Construction and Natural-Language Description of Nonparametric Regression Models"

30 / 80 papers shown
Title
Automated Multi-Label Classification based on ML-Plan
Automated Multi-Label Classification based on ML-Plan
Marcel Wever
F. Mohr
Eyke Hüllermeier
27
13
0
09 Nov 2018
Change Surfaces for Expressive Multidimensional Changepoints and
  Counterfactual Prediction
Change Surfaces for Expressive Multidimensional Changepoints and Counterfactual Prediction
William Herlands
Daniel B. Neill
H. Nickisch
A. Wilson
OOD
62
2
0
28 Oct 2018
A natural 4-parameter family of covariance functions for stationary
  Gaussian processes
A natural 4-parameter family of covariance functions for stationary Gaussian processes
R. MacKay
N. E. Phillips
11
2
0
17 Oct 2018
Automatic Bayesian Density Analysis
Automatic Bayesian Density Analysis
Antonio Vergari
Alejandro Molina
Robert Peharz
Zoubin Ghahramani
Kristian Kersting
Isabel Valera
53
35
0
24 Jul 2018
Differentiable Compositional Kernel Learning for Gaussian Processes
Differentiable Compositional Kernel Learning for Gaussian Processes
Shengyang Sun
Guodong Zhang
Chaoqi Wang
Wenyuan Zeng
Jiaman Li
Roger C. Grosse
BDL
83
70
0
12 Jun 2018
The Gaussian Process Autoregressive Regression Model (GPAR)
The Gaussian Process Autoregressive Regression Model (GPAR)
James Requeima
Will Tebbutt
W. Bruinsma
Richard Turner
146
41
0
20 Feb 2018
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
M. Lerasle
Z. Szabó
Gaspar Massiot
Guillaume Lecué
217
36
0
13 Feb 2018
client2vec: Towards Systematic Baselines for Banking Applications
client2vec: Towards Systematic Baselines for Banking Applications
Leonardo Baldassini
Jose Antonio Rodríguez Serrano
AI4TS
38
11
0
12 Feb 2018
Neural Feature Learning From Relational Database
Neural Feature Learning From Relational Database
Hoang Thanh Lam
T. Minh
M. Sinn
Beat Buesser
Martin Wistuba
55
8
0
16 Jan 2018
How well does your sampler really work?
How well does your sampler really work?
Ryan D. Turner
Brady Neal
60
4
0
16 Dec 2017
Building machines that adapt and compute like brains
Building machines that adapt and compute like brains
Brenden M. Lake
J. Tenenbaum
AI4CEFedMLNAIAILaw
331
887
0
11 Nov 2017
Characteristic and Universal Tensor Product Kernels
Characteristic and Universal Tensor Product Kernels
Z. Szabó
Bharath K. Sriperumbudur
179
72
0
28 Aug 2017
Scaling up the Automatic Statistician: Scalable Structure Discovery
  using Gaussian Processes
Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes
Hyunjik Kim
Yee Whye Teh
77
52
0
08 Jun 2017
StreetStyle: Exploring world-wide clothing styles from millions of
  photos
StreetStyle: Exploring world-wide clothing styles from millions of photos
Kevin Blackburn-Matzen
Kavita Bala
Noah Snavely
82
90
0
06 Jun 2017
One button machine for automating feature engineering in relational
  databases
One button machine for automating feature engineering in relational databases
Hoang Thanh Lam
Johann-Michael Thiebaut
M. Sinn
Bei Chen
Tiep Mai
Öznur Alkan
67
95
0
01 Jun 2017
Efficient Learning of Harmonic Priors for Pitch Detection in Polyphonic
  Music
Efficient Learning of Harmonic Priors for Pitch Detection in Polyphonic Music
Pablo A. Alvarado
D. Stowell
40
7
0
19 May 2017
REMIX: Automated Exploration for Interactive Outlier Detection
REMIX: Automated Exploration for Interactive Outlier Detection
Yanjie Fu
Charu C. Aggarwal
Srinivasan Parthasarathy
D. Turaga
Hui Xiong
32
5
0
17 May 2017
Discovering Latent Covariance Structures for Multiple Time Series
Discovering Latent Covariance Structures for Multiple Time Series
Anh Tong
Jaesik Choi
AI4TS
15
0
0
28 Mar 2017
Time Series Structure Discovery via Probabilistic Program Synthesis
Time Series Structure Discovery via Probabilistic Program Synthesis
Ulrich Schaechtle
Feras A. Saad
Alexey Radul
Vikash K. Mansinghka
AI4TS
74
10
0
21 Nov 2016
Probabilistic structure discovery in time series data
Probabilistic structure discovery in time series data
David Janz
Brooks Paige
Tom Rainforth
Jan-Willem van de Meent
Frank Wood
AI4TS
31
9
0
21 Nov 2016
Stochastic Variational Deep Kernel Learning
Stochastic Variational Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
144
267
0
01 Nov 2016
Model Selection for Gaussian Process Regression by Approximation Set
  Coding
Model Selection for Gaussian Process Regression by Approximation Set Coding
B. Fischer
Nico S. Gorbach
Stefan Bauer
Yatao Bian
J. M. Buhmann
GP
31
6
0
04 Oct 2016
Automatic Generation of Probabilistic Programming from Time Series Data
Automatic Generation of Probabilistic Programming from Time Series Data
Anh Tong
Jaesik Choi
AI4TS
43
6
0
04 Jul 2016
Gaussian Processes for Music Audio Modelling and Content Analysis
Gaussian Processes for Music Audio Modelling and Content Analysis
Pablo A. Alvarado
D. Stowell
20
6
0
03 Jun 2016
Interpretable Distribution Features with Maximum Testing Power
Interpretable Distribution Features with Maximum Testing Power
Wittawat Jitkrittum
Z. Szabó
Kacper P. Chwialkowski
Arthur Gretton
106
136
0
22 May 2016
Probabilistic Programming with Gaussian Process Memoization
Probabilistic Programming with Gaussian Process Memoization
Ulrich Schaechtle
Ben Zinberg
Alexey Radul
Kostas Stathis
Vikash K. Mansinghka
GP
57
11
0
17 Dec 2015
The Automatic Statistician: A Relational Perspective
The Automatic Statistician: A Relational Perspective
Yunseong Hwang
Anh Tong
Jaesik Choi
AI4TS
54
5
0
26 Nov 2015
Scalable Gaussian Processes for Characterizing Multidimensional Change
  Surfaces
Scalable Gaussian Processes for Characterizing Multidimensional Change Surfaces
William Herlands
A. Wilson
H. Nickisch
Seth Flaxman
Daniel B. Neill
Wilbert Van Panhuis
Eric Xing
44
32
0
13 Nov 2015
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
288
890
0
06 Nov 2015
Big Learning with Bayesian Methods
Big Learning with Bayesian Methods
Jun Zhu
Jianfei Chen
Wenbo Hu
Bo Zhang
BDL
534
84
0
24 Nov 2014
Previous
12