ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.5736
  4. Cited By
Learning Rich Features from RGB-D Images for Object Detection and
  Segmentation

Learning Rich Features from RGB-D Images for Object Detection and Segmentation

22 July 2014
Saurabh Gupta
Ross B. Girshick
Pablo Arbeláez
Jitendra Malik
    ObjD
ArXivPDFHTML

Papers citing "Learning Rich Features from RGB-D Images for Object Detection and Segmentation"

7 / 57 papers shown
Title
SceneNet: Understanding Real World Indoor Scenes With Synthetic Data
SceneNet: Understanding Real World Indoor Scenes With Synthetic Data
Ankur Handa
Viorica Patraucean
Vijay Badrinarayanan
Simon Stent
R. Cipolla
3DPC
3DV
21
230
0
22 Nov 2015
Vision System and Depth Processing for DRC-HUBO+
Vision System and Depth Processing for DRC-HUBO+
Inwook Shim
Seunghak Shin
Yunsu Bok
Kyungdon Joo
Dong-Geol Choi
Joon-Young Lee
Jaesik Park
Jun-Ho Oh
In So Kweon
MDE
31
13
0
21 Sep 2015
Depth-based hand pose estimation: methods, data, and challenges
Depth-based hand pose estimation: methods, data, and challenges
J. Supančič
Grégory Rogez
Yi Yang
Jamie Shotton
Deva Ramanan
3DH
13
116
0
24 Apr 2015
Holistically-Nested Edge Detection
Holistically-Nested Edge Detection
Saining Xie
Z. Tu
18
3,456
0
24 Apr 2015
Predicting Complete 3D Models of Indoor Scenes
Predicting Complete 3D Models of Indoor Scenes
Ruiqi Guo
Chuhang Zou
Derek Hoiem
3DV
9
57
0
09 Apr 2015
Do More Dropouts in Pool5 Feature Maps for Better Object Detection
Do More Dropouts in Pool5 Feature Maps for Better Object Detection
Zhiqiang Shen
Xiangyang Xue
22
5
0
24 Sep 2014
Indoor Semantic Segmentation using depth information
Indoor Semantic Segmentation using depth information
Camille Couprie
C. Farabet
Laurent Najman
Yann LeCun
SSeg
MDE
68
473
0
16 Jan 2013
Previous
12