ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.5908
  4. Cited By
Understanding image representations by measuring their equivariance and
  equivalence

Understanding image representations by measuring their equivariance and equivalence

21 November 2014
Karel Lenc
Andrea Vedaldi
    SSL
    FAtt
ArXivPDFHTML

Papers citing "Understanding image representations by measuring their equivariance and equivalence"

46 / 46 papers shown
Title
Inference-Time Decomposition of Activations (ITDA): A Scalable Approach to Interpreting Large Language Models
Inference-Time Decomposition of Activations (ITDA): A Scalable Approach to Interpreting Large Language Models
Patrick Leask
Neel Nanda
Noura Al Moubayed
46
1
0
23 May 2025
Model alignment using inter-modal bridges
Model alignment using inter-modal bridges
Ali Gholamzadeh
Noor Sajid
127
0
0
18 May 2025
Shared Global and Local Geometry of Language Model Embeddings
Shared Global and Local Geometry of Language Model Embeddings
Andrew Lee
Melanie Weber
F. Viégas
Martin Wattenberg
FedML
92
3
0
27 Mar 2025
Model Lakes
Model Lakes
Koyena Pal
David Bau
Renée J. Miller
113
0
0
24 Feb 2025
Discovering Chunks in Neural Embeddings for Interpretability
Discovering Chunks in Neural Embeddings for Interpretability
Shuchen Wu
Stephan Alaniz
Eric Schulz
Zeynep Akata
65
0
0
03 Feb 2025
Relative Representations: Topological and Geometric Perspectives
Relative Representations: Topological and Geometric Perspectives
Alejandro García-Castellanos
Giovanni Luca Marchetti
Danica Kragic
Martina Scolamiero
64
0
0
17 Sep 2024
When predict can also explain: few-shot prediction to select better neural latents
When predict can also explain: few-shot prediction to select better neural latents
Kabir V. Dabholkar
Omri Barak
BDL
78
0
0
23 May 2024
OnDev-LCT: On-Device Lightweight Convolutional Transformers towards federated learning
OnDev-LCT: On-Device Lightweight Convolutional Transformers towards federated learning
Chu Myaet Thwal
Minh N. H. Nguyen
Ye Lin Tun
Seongjin Kim
My T. Thai
Choong Seon Hong
76
5
0
22 Jan 2024
Similarity of Neural Network Models: A Survey of Functional and Representational Measures
Similarity of Neural Network Models: A Survey of Functional and Representational Measures
Max Klabunde
Tobias Schumacher
M. Strohmaier
Florian Lemmerich
102
67
0
10 May 2023
Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey
Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey
Kunlin Wang
Zi Wang
Zhang Li
Ang Su
Xichao Teng
Minhao Liu
Qifeng Yu
Qifeng Yu
ObjD
119
9
0
21 Feb 2023
DeepCorrect: Correcting DNN models against Image Distortions
DeepCorrect: Correcting DNN models against Image Distortions
Tejas S. Borkar
Lina Karam
55
94
0
05 May 2017
Visual Saliency Prediction Using a Mixture of Deep Neural Networks
Visual Saliency Prediction Using a Mixture of Deep Neural Networks
Samuel F. Dodge
Lina Karam
FAtt
66
48
0
01 Feb 2017
Steerable CNNs
Steerable CNNs
Taco S. Cohen
Max Welling
BDL
101
498
0
27 Dec 2016
Generalization Error of Invariant Classifiers
Generalization Error of Invariant Classifiers
Jure Sokolić
Raja Giryes
Guillermo Sapiro
M. Rodrigues
37
78
0
14 Oct 2016
An Analysis of Deep Neural Network Models for Practical Applications
An Analysis of Deep Neural Network Models for Practical Applications
A. Canziani
Adam Paszke
Eugenio Culurciello
71
1,165
0
24 May 2016
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
322
37,704
0
20 May 2016
TI-POOLING: transformation-invariant pooling for feature learning in
  Convolutional Neural Networks
TI-POOLING: transformation-invariant pooling for feature learning in Convolutional Neural Networks
D. Laptev
Nikolay Savinov
J. M. Buhmann
Marc Pollefeys
OOD
46
257
0
21 Apr 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
117
1,917
0
24 Feb 2016
Exploiting Cyclic Symmetry in Convolutional Neural Networks
Exploiting Cyclic Symmetry in Convolutional Neural Networks
Sander Dieleman
J. Fauw
Koray Kavukcuoglu
86
364
0
08 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
Aravindh Mahendran
Andrea Vedaldi
FAtt
55
532
0
07 Dec 2015
Convergent Learning: Do different neural networks learn the same
  representations?
Convergent Learning: Do different neural networks learn the same representations?
Yixuan Li
J. Yosinski
Jeff Clune
Hod Lipson
John E. Hopcroft
SSL
74
358
0
24 Nov 2015
Spatial Transformer Networks
Spatial Transformer Networks
Max Jaderberg
Karen Simonyan
Andrew Zisserman
Koray Kavukcuoglu
264
7,361
0
05 Jun 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
412
61,900
0
04 Jun 2015
Understanding deep features with computer-generated imagery
Understanding deep features with computer-generated imagery
Mathieu Aubry
Bryan C. Russell
41
148
0
03 Jun 2015
Fast R-CNN
Fast R-CNN
Ross B. Girshick
ObjD
277
24,976
0
30 Apr 2015
Object Detection Networks on Convolutional Feature Maps
Object Detection Networks on Convolutional Feature Maps
Shaoqing Ren
Kaiming He
Ross B. Girshick
Xinming Zhang
Jian Sun
ObjD
66
409
0
23 Apr 2015
Rotation-invariant convolutional neural networks for galaxy morphology
  prediction
Rotation-invariant convolutional neural networks for galaxy morphology prediction
Sander Dieleman
K. Willett
J. Dambre
64
652
0
24 Mar 2015
Visualizing Object Detection Features
Visualizing Object Detection Features
Carl Vondrick
A. Khosla
Hamed Pirsiavash
Tomasz Malisiewicz
Antonio Torralba
57
56
0
19 Feb 2015
MatConvNet - Convolutional Neural Networks for MATLAB
MatConvNet - Convolutional Neural Networks for MATLAB
Andrea Vedaldi
Karel Lenc
260
2,947
0
15 Dec 2014
How transferable are features in deep neural networks?
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
154
8,309
0
06 Nov 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
333
43,511
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
954
99,991
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.1K
39,383
0
01 Sep 2014
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual
  Recognition
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
ObjD
262
11,183
0
18 Jun 2014
Detect What You Can: Detecting and Representing Objects using Holistic
  Models and Body Parts
Detect What You Can: Detecting and Representing Objects using Holistic Models and Body Parts
Xianjie Chen
Roozbeh Mottaghi
Xiaobai Liu
Sanja Fidler
R. Urtasun
Alan Yuille
72
639
0
08 Jun 2014
Return of the Devil in the Details: Delving Deep into Convolutional Nets
Return of the Devil in the Details: Delving Deep into Convolutional Nets
Ken Chatfield
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
189
3,414
0
14 May 2014
CNN Features off-the-shelf: an Astounding Baseline for Recognition
CNN Features off-the-shelf: an Astounding Baseline for Recognition
A. Razavian
Hossein Azizpour
Josephine Sullivan
S. Carlsson
127
4,937
0
23 Mar 2014
OverFeat: Integrated Recognition, Localization and Detection using
  Convolutional Networks
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
P. Sermanet
David Eigen
Xiang Zhang
Michaël Mathieu
Rob Fergus
Yann LeCun
ObjD
135
4,999
0
21 Dec 2013
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
194
7,252
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
329
15,825
0
12 Nov 2013
Rich feature hierarchies for accurate object detection and semantic
  segmentation
Rich feature hierarchies for accurate object detection and semantic segmentation
Ross B. Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
ObjD
224
26,122
0
11 Nov 2013
DeCAF: A Deep Convolutional Activation Feature for Generic Visual
  Recognition
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
Jeff Donahue
Yangqing Jia
Oriol Vinyals
Judy Hoffman
Ning Zhang
Eric Tzeng
Trevor Darrell
VLM
ObjD
160
4,946
0
06 Oct 2013
Predicting Parameters in Deep Learning
Predicting Parameters in Deep Learning
Misha Denil
B. Shakibi
Laurent Dinh
MarcÁurelio Ranzato
Nando de Freitas
OOD
144
1,314
0
03 Jun 2013
Learning Invariant Representations with Local Transformations
Learning Invariant Representations with Local Transformations
Kihyuk Sohn
Honglak Lee
OOD
56
189
0
27 Jun 2012
Invariant Scattering Convolution Networks
Invariant Scattering Convolution Networks
Joan Bruna
S. Mallat
93
1,272
0
05 Mar 2012
1