ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.1193
  4. Cited By
New insights and perspectives on the natural gradient method

New insights and perspectives on the natural gradient method

3 December 2014
James Martens
    ODL
ArXivPDFHTML

Papers citing "New insights and perspectives on the natural gradient method"

50 / 121 papers shown
Title
Variational Formulation of the Particle Flow Particle Filter
Variational Formulation of the Particle Flow Particle Filter
Yinzhuang Yi
Jorge Cortés
Nikolay Atanasov
36
0
0
06 May 2025
NANO-SLAM : Natural Gradient Gaussian Approximation for Vehicle SLAM
NANO-SLAM : Natural Gradient Gaussian Approximation for Vehicle SLAM
Tianyi Zhang
Wenhan Cao
Chang-rui Liu
Feihong Zhang
Wei Wu
Shengbo Eben Li
24
0
0
27 Apr 2025
Quantifying Privacy Leakage in Split Inference via Fisher-Approximated Shannon Information Analysis
Quantifying Privacy Leakage in Split Inference via Fisher-Approximated Shannon Information Analysis
Ruijun Deng
Zhihui Lu
Qiang Duan
FedML
46
0
0
14 Apr 2025
Enhancing Multi-task Learning Capability of Medical Generalist Foundation Model via Image-centric Multi-annotation Data
Enhancing Multi-task Learning Capability of Medical Generalist Foundation Model via Image-centric Multi-annotation Data
Xun Zhu
Fanbin Mo
Zheng Zhang
J. Wang
Yiming Shi
Ming Wu
Chuang Zhang
Miao Li
Ji Wu
32
0
0
14 Apr 2025
CAMEx: Curvature-aware Merging of Experts
CAMEx: Curvature-aware Merging of Experts
Dung V. Nguyen
Minh H. Nguyen
Luc Q. Nguyen
R. Teo
T. Nguyen
Linh Duy Tran
MoMe
104
2
0
26 Feb 2025
Data Attribution for Text-to-Image Models by Unlearning Synthesized Images
Data Attribution for Text-to-Image Models by Unlearning Synthesized Images
Sheng-Yu Wang
Aaron Hertzmann
Alexei A. Efros
Jun-Yan Zhu
Richard Zhang
TDI
128
2
0
21 Feb 2025
Position: Curvature Matrices Should Be Democratized via Linear Operators
Position: Curvature Matrices Should Be Democratized via Linear Operators
Felix Dangel
Runa Eschenhagen
Weronika Ormaniec
Andres Fernandez
Lukas Tatzel
Agustinus Kristiadi
58
3
0
31 Jan 2025
Theoretical characterisation of the Gauss-Newton conditioning in Neural Networks
Theoretical characterisation of the Gauss-Newton conditioning in Neural Networks
Jim Zhao
Sidak Pal Singh
Aurelien Lucchi
AI4CE
48
0
0
04 Nov 2024
Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Models
Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Models
Jinxu Lin
Linwei Tao
Minjing Dong
Chang Xu
TDI
41
2
0
24 Oct 2024
Debiasing Mini-Batch Quadratics for Applications in Deep Learning
Debiasing Mini-Batch Quadratics for Applications in Deep Learning
Lukas Tatzel
Bálint Mucsányi
Osane Hackel
Philipp Hennig
43
0
0
18 Oct 2024
Influence Functions for Scalable Data Attribution in Diffusion Models
Influence Functions for Scalable Data Attribution in Diffusion Models
Bruno Mlodozeniec
Runa Eschenhagen
Juhan Bae
Alexander Immer
David Krueger
Richard E. Turner
TDI
DiffM
75
4
0
17 Oct 2024
What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis
What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis
Weronika Ormaniec
Felix Dangel
Sidak Pal Singh
38
7
0
14 Oct 2024
Erasure Coded Neural Network Inference via Fisher Averaging
Erasure Coded Neural Network Inference via Fisher Averaging
Divyansh Jhunjhunwala
Neharika Jali
Gauri Joshi
Shiqiang Wang
MoMe
FedML
31
1
0
02 Sep 2024
An Improved Empirical Fisher Approximation for Natural Gradient Descent
An Improved Empirical Fisher Approximation for Natural Gradient Descent
Xiaodong Wu
Wenyi Yu
Chao Zhang
Philip Woodland
29
3
0
10 Jun 2024
A Survey on Machine Unlearning: Techniques and New Emerged Privacy Risks
A Survey on Machine Unlearning: Techniques and New Emerged Privacy Risks
Hengzhu Liu
Ping Xiong
Tianqing Zhu
Philip S. Yu
35
6
0
10 Jun 2024
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Emilia Magnani
Marvin Pfortner
Tobias Weber
Philipp Hennig
UQCV
69
1
0
07 Jun 2024
Scalable Bayesian Learning with posteriors
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
62
1
0
31 May 2024
Categorical Flow Matching on Statistical Manifolds
Categorical Flow Matching on Statistical Manifolds
Chaoran Cheng
Jiahan Li
Jian-wei Peng
Ge Liu
61
10
0
26 May 2024
AdaFisher: Adaptive Second Order Optimization via Fisher Information
AdaFisher: Adaptive Second Order Optimization via Fisher Information
Damien Martins Gomes
Yanlei Zhang
Eugene Belilovsky
Guy Wolf
Mahdi S. Hosseini
ODL
76
2
0
26 May 2024
Pruning as a Domain-specific LLM Extractor
Pruning as a Domain-specific LLM Extractor
Nan Zhang
Yanchi Liu
Xujiang Zhao
Wei Cheng
Runxue Bao
Rui Zhang
Prasenjit Mitra
Haifeng Chen
26
9
0
10 May 2024
WHALE-FL: Wireless and Heterogeneity Aware Latency Efficient Federated Learning over Mobile Devices via Adaptive Subnetwork Scheduling
WHALE-FL: Wireless and Heterogeneity Aware Latency Efficient Federated Learning over Mobile Devices via Adaptive Subnetwork Scheduling
Huai-an Su
Jiaxiang Geng
Liang Li
Xiaoqi Qin
Yanzhao Hou
Xin Fu
Miao Pan
Miao Pan
40
1
0
01 May 2024
Statistical Mechanics and Artificial Neural Networks: Principles,
  Models, and Applications
Statistical Mechanics and Artificial Neural Networks: Principles, Models, and Applications
Lucas Böttcher
Gregory R. Wheeler
32
0
0
05 Apr 2024
Sequential-in-time training of nonlinear parametrizations for solving
  time-dependent partial differential equations
Sequential-in-time training of nonlinear parametrizations for solving time-dependent partial differential equations
Huan Zhang
Yifan Chen
Eric Vanden-Eijnden
Benjamin Peherstorfer
42
2
0
01 Apr 2024
Discrete Natural Evolution Strategies
Discrete Natural Evolution Strategies
Ahmad Ayaz Amin
25
0
0
30 Mar 2024
A Differential Geometric View and Explainability of GNN on Evolving
  Graphs
A Differential Geometric View and Explainability of GNN on Evolving Graphs
Yazheng Liu
Xi Zhang
Sihong Xie
21
3
0
11 Mar 2024
Training-set-free two-stage deep learning for spectroscopic data
  de-noising
Training-set-free two-stage deep learning for spectroscopic data de-noising
Dongchen Huang
Junde Liu
Tian Qian
Hongming Weng
36
0
0
29 Feb 2024
Corrective Machine Unlearning
Corrective Machine Unlearning
Shashwat Goel
Ameya Prabhu
Philip Torr
Ponnurangam Kumaraguru
Amartya Sanyal
OnRL
40
14
0
21 Feb 2024
Structured Inverse-Free Natural Gradient: Memory-Efficient &
  Numerically-Stable KFAC
Structured Inverse-Free Natural Gradient: Memory-Efficient & Numerically-Stable KFAC
Wu Lin
Felix Dangel
Runa Eschenhagen
Kirill Neklyudov
Agustinus Kristiadi
Richard Turner
Alireza Makhzani
22
3
0
09 Dec 2023
Intriguing Properties of Data Attribution on Diffusion Models
Intriguing Properties of Data Attribution on Diffusion Models
Xiaosen Zheng
Tianyu Pang
Chao Du
Jing Jiang
Min-Bin Lin
TDI
34
20
1
01 Nov 2023
Model Merging by Uncertainty-Based Gradient Matching
Model Merging by Uncertainty-Based Gradient Matching
Nico Daheim
Thomas Möllenhoff
E. Ponti
Iryna Gurevych
Mohammad Emtiyaz Khan
MoMe
FedML
32
43
0
19 Oct 2023
Modify Training Directions in Function Space to Reduce Generalization
  Error
Modify Training Directions in Function Space to Reduce Generalization Error
Yi Yu
Wenlian Lu
Boyu Chen
27
0
0
25 Jul 2023
Correlated Noise in Epoch-Based Stochastic Gradient Descent:
  Implications for Weight Variances
Correlated Noise in Epoch-Based Stochastic Gradient Descent: Implications for Weight Variances
Marcel Kühn
B. Rosenow
19
3
0
08 Jun 2023
KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned
  Stochastic Optimization
KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned Stochastic Optimization
Jonathan Mei
Alexander Moreno
Luke Walters
ODL
29
1
0
30 May 2023
Sophia: A Scalable Stochastic Second-order Optimizer for Language Model
  Pre-training
Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training
Hong Liu
Zhiyuan Li
David Leo Wright Hall
Percy Liang
Tengyu Ma
VLM
55
130
0
23 May 2023
ISAAC Newton: Input-based Approximate Curvature for Newton's Method
ISAAC Newton: Input-based Approximate Curvature for Newton's Method
Felix Petersen
Tobias Sutter
Christian Borgelt
Dongsung Huh
Hilde Kuehne
Yuekai Sun
Oliver Deussen
ODL
31
5
0
01 May 2023
Elastic Weight Removal for Faithful and Abstractive Dialogue Generation
Elastic Weight Removal for Faithful and Abstractive Dialogue Generation
Nico Daheim
Nouha Dziri
Mrinmaya Sachan
Iryna Gurevych
E. Ponti
MoMe
34
30
0
30 Mar 2023
A Multi-Agent Adaptive Deep Learning Framework for Online Intrusion
  Detection
A Multi-Agent Adaptive Deep Learning Framework for Online Intrusion Detection
Mahdi Soltani
Khashayar Khajavi
M. J. Siavoshani
A. Jahangir
18
7
0
05 Mar 2023
Achieving High Accuracy with PINNs via Energy Natural Gradients
Achieving High Accuracy with PINNs via Energy Natural Gradients
Johannes Müller
Marius Zeinhofer
13
4
0
25 Feb 2023
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations
  and Affine Invariance
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
19
17
0
21 Feb 2023
Structural Neural Additive Models: Enhanced Interpretable Machine
  Learning
Structural Neural Additive Models: Enhanced Interpretable Machine Learning
Mattias Luber
Anton Thielmann
Benjamin Säfken
31
7
0
18 Feb 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
32
11
0
14 Feb 2023
Learning Discretized Neural Networks under Ricci Flow
Learning Discretized Neural Networks under Ricci Flow
Jun Chen
Han Chen
Mengmeng Wang
Guang Dai
Ivor W. Tsang
Yong-Jin Liu
25
2
0
07 Feb 2023
FUN with Fisher: Improving Generalization of Adapter-Based Cross-lingual
  Transfer with Scheduled Unfreezing
FUN with Fisher: Improving Generalization of Adapter-Based Cross-lingual Transfer with Scheduled Unfreezing
Chen Cecilia Liu
Jonas Pfeiffer
Ivan Vulić
Iryna Gurevych
CLL
29
9
0
13 Jan 2023
PipeFisher: Efficient Training of Large Language Models Using Pipelining
  and Fisher Information Matrices
PipeFisher: Efficient Training of Large Language Models Using Pipelining and Fisher Information Matrices
Kazuki Osawa
Shigang Li
Torsten Hoefler
AI4CE
35
24
0
25 Nov 2022
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural
  Policy Gradient Methods
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods
Yanli Liu
Kaipeng Zhang
Tamer Basar
W. Yin
45
102
0
15 Nov 2022
HesScale: Scalable Computation of Hessian Diagonals
HesScale: Scalable Computation of Hessian Diagonals
Mohamed Elsayed
A. R. Mahmood
22
7
0
20 Oct 2022
Brand New K-FACs: Speeding up K-FAC with Online Decomposition Updates
Brand New K-FACs: Speeding up K-FAC with Online Decomposition Updates
C. Puiu
14
2
0
16 Oct 2022
On the Identifiability and Estimation of Causal Location-Scale Noise
  Models
On the Identifiability and Estimation of Causal Location-Scale Noise Models
Alexander Immer
Christoph Schultheiss
Julia E. Vogt
Bernhard Schölkopf
Peter Buhlmann
Alexander Marx
CML
31
32
0
13 Oct 2022
Component-Wise Natural Gradient Descent -- An Efficient Neural Network
  Optimization
Component-Wise Natural Gradient Descent -- An Efficient Neural Network Optimization
Tran van Sang
Mhd Irvan
R. Yamaguchi
Toshiyuki Nakata
15
1
0
11 Oct 2022
Two-Tailed Averaging: Anytime, Adaptive, Once-in-a-While Optimal Weight
  Averaging for Better Generalization
Two-Tailed Averaging: Anytime, Adaptive, Once-in-a-While Optimal Weight Averaging for Better Generalization
Gábor Melis
MoMe
36
1
0
26 Sep 2022
123
Next