Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1412.1193
Cited By
New insights and perspectives on the natural gradient method
3 December 2014
James Martens
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"New insights and perspectives on the natural gradient method"
50 / 121 papers shown
Title
Variational Formulation of the Particle Flow Particle Filter
Yinzhuang Yi
Jorge Cortés
Nikolay Atanasov
36
0
0
06 May 2025
NANO-SLAM : Natural Gradient Gaussian Approximation for Vehicle SLAM
Tianyi Zhang
Wenhan Cao
Chang-rui Liu
Feihong Zhang
Wei Wu
Shengbo Eben Li
24
0
0
27 Apr 2025
Quantifying Privacy Leakage in Split Inference via Fisher-Approximated Shannon Information Analysis
Ruijun Deng
Zhihui Lu
Qiang Duan
FedML
46
0
0
14 Apr 2025
Enhancing Multi-task Learning Capability of Medical Generalist Foundation Model via Image-centric Multi-annotation Data
Xun Zhu
Fanbin Mo
Zheng Zhang
J. Wang
Yiming Shi
Ming Wu
Chuang Zhang
Miao Li
Ji Wu
32
0
0
14 Apr 2025
CAMEx: Curvature-aware Merging of Experts
Dung V. Nguyen
Minh H. Nguyen
Luc Q. Nguyen
R. Teo
T. Nguyen
Linh Duy Tran
MoMe
104
2
0
26 Feb 2025
Data Attribution for Text-to-Image Models by Unlearning Synthesized Images
Sheng-Yu Wang
Aaron Hertzmann
Alexei A. Efros
Jun-Yan Zhu
Richard Zhang
TDI
128
2
0
21 Feb 2025
Position: Curvature Matrices Should Be Democratized via Linear Operators
Felix Dangel
Runa Eschenhagen
Weronika Ormaniec
Andres Fernandez
Lukas Tatzel
Agustinus Kristiadi
58
3
0
31 Jan 2025
Theoretical characterisation of the Gauss-Newton conditioning in Neural Networks
Jim Zhao
Sidak Pal Singh
Aurelien Lucchi
AI4CE
48
0
0
04 Nov 2024
Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Models
Jinxu Lin
Linwei Tao
Minjing Dong
Chang Xu
TDI
41
2
0
24 Oct 2024
Debiasing Mini-Batch Quadratics for Applications in Deep Learning
Lukas Tatzel
Bálint Mucsányi
Osane Hackel
Philipp Hennig
43
0
0
18 Oct 2024
Influence Functions for Scalable Data Attribution in Diffusion Models
Bruno Mlodozeniec
Runa Eschenhagen
Juhan Bae
Alexander Immer
David Krueger
Richard E. Turner
TDI
DiffM
75
4
0
17 Oct 2024
What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis
Weronika Ormaniec
Felix Dangel
Sidak Pal Singh
38
7
0
14 Oct 2024
Erasure Coded Neural Network Inference via Fisher Averaging
Divyansh Jhunjhunwala
Neharika Jali
Gauri Joshi
Shiqiang Wang
MoMe
FedML
31
1
0
02 Sep 2024
An Improved Empirical Fisher Approximation for Natural Gradient Descent
Xiaodong Wu
Wenyi Yu
Chao Zhang
Philip Woodland
29
3
0
10 Jun 2024
A Survey on Machine Unlearning: Techniques and New Emerged Privacy Risks
Hengzhu Liu
Ping Xiong
Tianqing Zhu
Philip S. Yu
35
6
0
10 Jun 2024
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Emilia Magnani
Marvin Pfortner
Tobias Weber
Philipp Hennig
UQCV
69
1
0
07 Jun 2024
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
62
1
0
31 May 2024
Categorical Flow Matching on Statistical Manifolds
Chaoran Cheng
Jiahan Li
Jian-wei Peng
Ge Liu
61
10
0
26 May 2024
AdaFisher: Adaptive Second Order Optimization via Fisher Information
Damien Martins Gomes
Yanlei Zhang
Eugene Belilovsky
Guy Wolf
Mahdi S. Hosseini
ODL
76
2
0
26 May 2024
Pruning as a Domain-specific LLM Extractor
Nan Zhang
Yanchi Liu
Xujiang Zhao
Wei Cheng
Runxue Bao
Rui Zhang
Prasenjit Mitra
Haifeng Chen
26
9
0
10 May 2024
WHALE-FL: Wireless and Heterogeneity Aware Latency Efficient Federated Learning over Mobile Devices via Adaptive Subnetwork Scheduling
Huai-an Su
Jiaxiang Geng
Liang Li
Xiaoqi Qin
Yanzhao Hou
Xin Fu
Miao Pan
Miao Pan
40
1
0
01 May 2024
Statistical Mechanics and Artificial Neural Networks: Principles, Models, and Applications
Lucas Böttcher
Gregory R. Wheeler
32
0
0
05 Apr 2024
Sequential-in-time training of nonlinear parametrizations for solving time-dependent partial differential equations
Huan Zhang
Yifan Chen
Eric Vanden-Eijnden
Benjamin Peherstorfer
42
2
0
01 Apr 2024
Discrete Natural Evolution Strategies
Ahmad Ayaz Amin
25
0
0
30 Mar 2024
A Differential Geometric View and Explainability of GNN on Evolving Graphs
Yazheng Liu
Xi Zhang
Sihong Xie
21
3
0
11 Mar 2024
Training-set-free two-stage deep learning for spectroscopic data de-noising
Dongchen Huang
Junde Liu
Tian Qian
Hongming Weng
36
0
0
29 Feb 2024
Corrective Machine Unlearning
Shashwat Goel
Ameya Prabhu
Philip Torr
Ponnurangam Kumaraguru
Amartya Sanyal
OnRL
40
14
0
21 Feb 2024
Structured Inverse-Free Natural Gradient: Memory-Efficient & Numerically-Stable KFAC
Wu Lin
Felix Dangel
Runa Eschenhagen
Kirill Neklyudov
Agustinus Kristiadi
Richard Turner
Alireza Makhzani
22
3
0
09 Dec 2023
Intriguing Properties of Data Attribution on Diffusion Models
Xiaosen Zheng
Tianyu Pang
Chao Du
Jing Jiang
Min-Bin Lin
TDI
34
20
1
01 Nov 2023
Model Merging by Uncertainty-Based Gradient Matching
Nico Daheim
Thomas Möllenhoff
E. Ponti
Iryna Gurevych
Mohammad Emtiyaz Khan
MoMe
FedML
32
43
0
19 Oct 2023
Modify Training Directions in Function Space to Reduce Generalization Error
Yi Yu
Wenlian Lu
Boyu Chen
27
0
0
25 Jul 2023
Correlated Noise in Epoch-Based Stochastic Gradient Descent: Implications for Weight Variances
Marcel Kühn
B. Rosenow
19
3
0
08 Jun 2023
KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned Stochastic Optimization
Jonathan Mei
Alexander Moreno
Luke Walters
ODL
29
1
0
30 May 2023
Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training
Hong Liu
Zhiyuan Li
David Leo Wright Hall
Percy Liang
Tengyu Ma
VLM
55
130
0
23 May 2023
ISAAC Newton: Input-based Approximate Curvature for Newton's Method
Felix Petersen
Tobias Sutter
Christian Borgelt
Dongsung Huh
Hilde Kuehne
Yuekai Sun
Oliver Deussen
ODL
31
5
0
01 May 2023
Elastic Weight Removal for Faithful and Abstractive Dialogue Generation
Nico Daheim
Nouha Dziri
Mrinmaya Sachan
Iryna Gurevych
E. Ponti
MoMe
34
30
0
30 Mar 2023
A Multi-Agent Adaptive Deep Learning Framework for Online Intrusion Detection
Mahdi Soltani
Khashayar Khajavi
M. J. Siavoshani
A. Jahangir
18
7
0
05 Mar 2023
Achieving High Accuracy with PINNs via Energy Natural Gradients
Johannes Müller
Marius Zeinhofer
13
4
0
25 Feb 2023
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
19
17
0
21 Feb 2023
Structural Neural Additive Models: Enhanced Interpretable Machine Learning
Mattias Luber
Anton Thielmann
Benjamin Säfken
31
7
0
18 Feb 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
32
11
0
14 Feb 2023
Learning Discretized Neural Networks under Ricci Flow
Jun Chen
Han Chen
Mengmeng Wang
Guang Dai
Ivor W. Tsang
Yong-Jin Liu
25
2
0
07 Feb 2023
FUN with Fisher: Improving Generalization of Adapter-Based Cross-lingual Transfer with Scheduled Unfreezing
Chen Cecilia Liu
Jonas Pfeiffer
Ivan Vulić
Iryna Gurevych
CLL
29
9
0
13 Jan 2023
PipeFisher: Efficient Training of Large Language Models Using Pipelining and Fisher Information Matrices
Kazuki Osawa
Shigang Li
Torsten Hoefler
AI4CE
35
24
0
25 Nov 2022
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods
Yanli Liu
Kaipeng Zhang
Tamer Basar
W. Yin
45
102
0
15 Nov 2022
HesScale: Scalable Computation of Hessian Diagonals
Mohamed Elsayed
A. R. Mahmood
22
7
0
20 Oct 2022
Brand New K-FACs: Speeding up K-FAC with Online Decomposition Updates
C. Puiu
14
2
0
16 Oct 2022
On the Identifiability and Estimation of Causal Location-Scale Noise Models
Alexander Immer
Christoph Schultheiss
Julia E. Vogt
Bernhard Schölkopf
Peter Buhlmann
Alexander Marx
CML
31
32
0
13 Oct 2022
Component-Wise Natural Gradient Descent -- An Efficient Neural Network Optimization
Tran van Sang
Mhd Irvan
R. Yamaguchi
Toshiyuki Nakata
15
1
0
11 Oct 2022
Two-Tailed Averaging: Anytime, Adaptive, Once-in-a-While Optimal Weight Averaging for Better Generalization
Gábor Melis
MoMe
36
1
0
26 Sep 2022
1
2
3
Next