Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1412.1193
Cited By
New insights and perspectives on the natural gradient method
3 December 2014
James Martens
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"New insights and perspectives on the natural gradient method"
25 / 125 papers shown
Title
Adversarial Training Reduces Information and Improves Transferability
M. Terzi
Alessandro Achille
Marco Maggipinto
Gian Antonio Susto
AAML
24
23
0
22 Jul 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol
S. Zohren
Stephen J. Roberts
ODL
37
49
0
16 Jun 2020
Elastic weight consolidation for better bias inoculation
James Thorne
Andreas Vlachos
22
11
0
29 Apr 2020
Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less Forgetting
Sanyuan Chen
Yutai Hou
Yiming Cui
Wanxiang Che
Ting Liu
Xiangzhan Yu
KELM
CLL
21
212
0
27 Apr 2020
RelatIF: Identifying Explanatory Training Examples via Relative Influence
Elnaz Barshan
Marc-Etienne Brunet
Gintare Karolina Dziugaite
TDI
47
30
0
25 Mar 2020
Iterative Averaging in the Quest for Best Test Error
Diego Granziol
Xingchen Wan
Samuel Albanie
Stephen J. Roberts
10
3
0
02 Mar 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
25
168
0
19 Dec 2019
Hierarchical model-based policy optimization: from actions to action sequences and back
Daniel C. McNamee
11
1
0
28 Nov 2019
Geometry of learning neural quantum states
Chae-Yeun Park
M. Kastoryano
24
60
0
24 Oct 2019
Hessian based analysis of SGD for Deep Nets: Dynamics and Generalization
Xinyan Li
Qilong Gu
Yingxue Zhou
Tiancong Chen
A. Banerjee
ODL
42
51
0
24 Jul 2019
Lookahead Optimizer: k steps forward, 1 step back
Michael Ruogu Zhang
James Lucas
Geoffrey E. Hinton
Jimmy Ba
ODL
48
719
0
19 Jul 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
21
207
0
29 May 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
20
22
0
21 Feb 2019
Trust Region Value Optimization using Kalman Filtering
Shirli Di-Castro Shashua
Shie Mannor
19
7
0
23 Jan 2019
First-order and second-order variants of the gradient descent in a unified framework
Thomas Pierrot
Nicolas Perrin
Olivier Sigaud
ODL
30
7
0
18 Oct 2018
Fisher Information and Natural Gradient Learning of Random Deep Networks
S. Amari
Ryo Karakida
Masafumi Oizumi
19
34
0
22 Aug 2018
On the Acceleration of L-BFGS with Second-Order Information and Stochastic Batches
Jie Liu
Yu Rong
Martin Takáč
Junzhou Huang
ODL
24
7
0
14 Jul 2018
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
20
10
0
23 May 2018
Meta-Learning with Hessian-Free Approach in Deep Neural Nets Training
Boyu Chen
Wenlian Lu
Ernest Fokoue
21
1
0
22 May 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
20
85
0
24 Mar 2018
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
Erin Grant
Chelsea Finn
Sergey Levine
Trevor Darrell
Thomas L. Griffiths
BDL
21
505
0
26 Jan 2018
Warped Riemannian metrics for location-scale models
Salem Said
Lionel Bombrun
Y. Berthoumieu
35
15
0
22 Jul 2017
YellowFin and the Art of Momentum Tuning
Jian Zhang
Ioannis Mitliagkas
ODL
23
108
0
12 Jun 2017
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
22
3,172
0
15 Jun 2016
Previous
1
2
3