ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.1193
  4. Cited By
New insights and perspectives on the natural gradient method

New insights and perspectives on the natural gradient method

3 December 2014
James Martens
    ODL
ArXivPDFHTML

Papers citing "New insights and perspectives on the natural gradient method"

50 / 125 papers shown
Title
Component-Wise Natural Gradient Descent -- An Efficient Neural Network
  Optimization
Component-Wise Natural Gradient Descent -- An Efficient Neural Network Optimization
Tran van Sang
Mhd Irvan
R. Yamaguchi
Toshiyuki Nakata
15
1
0
11 Oct 2022
Two-Tailed Averaging: Anytime, Adaptive, Once-in-a-While Optimal Weight
  Averaging for Better Generalization
Two-Tailed Averaging: Anytime, Adaptive, Once-in-a-While Optimal Weight Averaging for Better Generalization
Gábor Melis
MoMe
36
1
0
26 Sep 2022
FedFOR: Stateless Heterogeneous Federated Learning with First-Order
  Regularization
FedFOR: Stateless Heterogeneous Federated Learning with First-Order Regularization
Junjiao Tian
James Smith
Z. Kira
19
3
0
21 Sep 2022
Conjugate Natural Selection
Conjugate Natural Selection
Reilly P. Raab
Luca de Alfaro
Yang Liu
18
0
0
29 Aug 2022
Training Large-Vocabulary Neural Language Models by Private Federated
  Learning for Resource-Constrained Devices
Training Large-Vocabulary Neural Language Models by Private Federated Learning for Resource-Constrained Devices
Mingbin Xu
Congzheng Song
Ye Tian
Neha Agrawal
Filip Granqvist
...
Shiyi Han
Yaqiao Deng
Leo Liu
Anmol Walia
Alex Jin
FedML
15
22
0
18 Jul 2022
Scalable K-FAC Training for Deep Neural Networks with Distributed
  Preconditioning
Scalable K-FAC Training for Deep Neural Networks with Distributed Preconditioning
Lin Zhang
S. Shi
Wei Wang
Bo-wen Li
36
10
0
30 Jun 2022
Classification of datasets with imputed missing values: does imputation
  quality matter?
Classification of datasets with imputed missing values: does imputation quality matter?
Tolou Shadbahr
M. Roberts
Jan Stanczuk
J. Gilbey
P. Teare
...
T. Mirtti
A. Rannikko
J. Aston
Jing Tang
Carola-Bibiane Schönlieb
30
52
0
16 Jun 2022
Attack-Agnostic Adversarial Detection
Attack-Agnostic Adversarial Detection
Jiaxin Cheng
Mohamed Hussein
J. Billa
Wael AbdAlmageed
AAML
26
0
0
01 Jun 2022
DIRA: Dynamic Domain Incremental Regularised Adaptation
DIRA: Dynamic Domain Incremental Regularised Adaptation
Abanoub Ghobrial
Xu Zheng
Darryl Hond
Hamid Asgari
Kerstin Eder
AI4CE
26
1
0
30 Apr 2022
Rethinking Exponential Averaging of the Fisher
Rethinking Exponential Averaging of the Fisher
C. Puiu
23
1
0
10 Apr 2022
Bayesian Learning Approach to Model Predictive Control
Bayesian Learning Approach to Model Predictive Control
Namhoon Cho
Seokwon Lee
Hyo-Sang Shin
Antonios Tsourdos
18
1
0
05 Mar 2022
Model-agnostic out-of-distribution detection using combined statistical
  tests
Model-agnostic out-of-distribution detection using combined statistical tests
Federico Bergamin
Pierre-Alexandre Mattei
Jakob Drachmann Havtorn
Hugo Senetaire
Hugo Schmutz
Lars Maaløe
Søren Hauberg
J. Frellsen
OODD
24
18
0
02 Mar 2022
Amortized Proximal Optimization
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
27
14
0
28 Feb 2022
Continual learning-based probabilistic slow feature analysis for
  multimode dynamic process monitoring
Continual learning-based probabilistic slow feature analysis for multimode dynamic process monitoring
Jingxin Zhang
Donghua Zhou
Maoyin Chen
Xia Hong
21
14
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
39
44
0
22 Feb 2022
Classical versus Quantum: comparing Tensor Network-based Quantum
  Circuits on LHC data
Classical versus Quantum: comparing Tensor Network-based Quantum Circuits on LHC data
Jack Y. Araz
M. Spannowsky
36
14
0
21 Feb 2022
A Geometric Understanding of Natural Gradient
A Geometric Understanding of Natural Gradient
Qinxun Bai
S. Rosenberg
Wei Xu
21
2
0
13 Feb 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order
  Optimization
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
43
23
0
28 Jan 2022
Dynamically Stable Poincaré Embeddings for Neural Manifolds
Dynamically Stable Poincaré Embeddings for Neural Manifolds
Jun Chen
Yuang Liu
Xiangrui Zhao
Mengmeng Wang
Yong-Jin Liu
26
0
0
21 Dec 2021
Depth Without the Magic: Inductive Bias of Natural Gradient Descent
Depth Without the Magic: Inductive Bias of Natural Gradient Descent
A. Kerekes
Anna Mészáros
Ferenc Huszár
ODL
29
4
0
22 Nov 2021
Training Neural Networks with Fixed Sparse Masks
Training Neural Networks with Fixed Sparse Masks
Yi-Lin Sung
Varun Nair
Colin Raffel
FedML
32
197
0
18 Nov 2021
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
30
14
0
01 Nov 2021
Resource-constrained Federated Edge Learning with Heterogeneous Data:
  Formulation and Analysis
Resource-constrained Federated Edge Learning with Heterogeneous Data: Formulation and Analysis
Yi Liu
Yuanshao Zhu
James J. Q. Yu
FedML
27
28
0
14 Oct 2021
The Information Geometry of Unsupervised Reinforcement Learning
The Information Geometry of Unsupervised Reinforcement Learning
Benjamin Eysenbach
Ruslan Salakhutdinov
Sergey Levine
SSL
OffRL
61
31
0
06 Oct 2021
Approximate Newton policy gradient algorithms
Approximate Newton policy gradient algorithms
Haoya Li
Samarth Gupta
Hsiangfu Yu
Lexing Ying
Inderjit Dhillon
51
2
0
05 Oct 2021
Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning
Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning
Prasetya Ajie Utama
N. Moosavi
Victor Sanh
Iryna Gurevych
AAML
61
35
0
09 Sep 2021
Fishr: Invariant Gradient Variances for Out-of-Distribution
  Generalization
Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
Alexandre Ramé
Corentin Dancette
Matthieu Cord
OOD
40
204
0
07 Sep 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
63
73
0
09 Jul 2021
M-FAC: Efficient Matrix-Free Approximations of Second-Order Information
M-FAC: Efficient Matrix-Free Approximations of Second-Order Information
Elias Frantar
Eldar Kurtic
Dan Alistarh
13
57
0
07 Jul 2021
Certifiable Machine Unlearning for Linear Models
Certifiable Machine Unlearning for Linear Models
Ananth Mahadevan
M. Mathioudakis
MU
14
45
0
29 Jun 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
58
289
0
28 Jun 2021
Sampling with Mirrored Stein Operators
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
45
19
0
23 Jun 2021
Natural continual learning: success is a journey, not (just) a
  destination
Natural continual learning: success is a journey, not (just) a destination
Ta-Chu Kao
Kristopher T. Jensen
Gido M. van de Ven
A. Bernacchia
Guillaume Hennequin
CLL
23
46
0
15 Jun 2021
Pulling back information geometry
Pulling back information geometry
Georgios Arvanitidis
Miguel González Duque
Alison Pouplin
Dimitris Kalatzis
Søren Hauberg
DRL
16
14
0
09 Jun 2021
TENGraD: Time-Efficient Natural Gradient Descent with Exact Fisher-Block
  Inversion
TENGraD: Time-Efficient Natural Gradient Descent with Exact Fisher-Block Inversion
Saeed Soori
Bugra Can
Baourun Mu
Mert Gurbuzbalaban
M. Dehnavi
24
10
0
07 Jun 2021
Local Adaptivity in Federated Learning: Convergence and Consistency
Local Adaptivity in Federated Learning: Convergence and Consistency
Jianyu Wang
Zheng Xu
Zachary Garrett
Zachary B. Charles
Luyang Liu
Gauri Joshi
FedML
32
39
0
04 Jun 2021
Reweighting Augmented Samples by Minimizing the Maximal Expected Loss
Reweighting Augmented Samples by Minimizing the Maximal Expected Loss
Mingyang Yi
Lu Hou
Lifeng Shang
Xin Jiang
Qun Liu
Zhi-Ming Ma
12
19
0
16 Mar 2021
A practical tutorial on Variational Bayes
A practical tutorial on Variational Bayes
Minh-Ngoc Tran
Trong-Nghia Nguyen
Viet-Hung Dao
BDL
29
38
0
01 Mar 2021
Posterior Meta-Replay for Continual Learning
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
54
0
01 Mar 2021
Appearance of Random Matrix Theory in Deep Learning
Appearance of Random Matrix Theory in Deep Learning
Nicholas P. Baskerville
Diego Granziol
J. Keating
15
11
0
12 Feb 2021
Mirror-Descent Inverse Kinematics for Box-constrained Joint Space
Mirror-Descent Inverse Kinematics for Box-constrained Joint Space
Taisuke Kobayashi
Takanori Jin
46
2
0
19 Jan 2021
Generalized Variational Continual Learning
Generalized Variational Continual Learning
Noel Loo
S. Swaroop
Richard Turner
BDL
CLL
33
58
0
24 Nov 2020
A Trace-restricted Kronecker-Factored Approximation to Natural Gradient
A Trace-restricted Kronecker-Factored Approximation to Natural Gradient
Kai-Xin Gao
Xiaolei Liu
Zheng-Hai Huang
Min Wang
Zidong Wang
Dachuan Xu
F. Yu
24
11
0
21 Nov 2020
A Random Matrix Theory Approach to Damping in Deep Learning
A Random Matrix Theory Approach to Damping in Deep Learning
Diego Granziol
Nicholas P. Baskerville
AI4CE
ODL
29
2
0
15 Nov 2020
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
  Filtering
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
44
6
0
09 Nov 2020
Delta-STN: Efficient Bilevel Optimization for Neural Networks using
  Structured Response Jacobians
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
27
24
0
26 Oct 2020
VacSIM: Learning Effective Strategies for COVID-19 Vaccine Distribution
  using Reinforcement Learning
VacSIM: Learning Effective Strategies for COVID-19 Vaccine Distribution using Reinforcement Learning
R. Awasthi
K. K. Guliani
Saif Ahmad Khan
Aniket Vashishtha
M. S. Gill
Arshita Bhatt
A. Nagori
Aniket Gupta
Ponnurangam Kumaraguru
Tavpritesh Sethi
34
24
0
14 Sep 2020
Optimization of Graph Neural Networks with Natural Gradient Descent
Optimization of Graph Neural Networks with Natural Gradient Descent
M. Izadi
Yihao Fang
R. Stevenson
Lizhen Lin
GNN
24
41
0
21 Aug 2020
Obtaining Adjustable Regularization for Free via Iterate Averaging
Obtaining Adjustable Regularization for Free via Iterate Averaging
Jingfeng Wu
Vladimir Braverman
Lin F. Yang
30
2
0
15 Aug 2020
Natural Gradient Shared Control
Natural Gradient Shared Control
Yoojin Oh
Shaowen Wu
Marc Toussaint
Jim Mainprice
13
9
0
30 Jul 2020
Previous
123
Next