Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1412.1897
Cited By
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
5 December 2014
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images"
50 / 1,403 papers shown
Title
Robust Deep Learning Ensemble against Deception
Wenqi Wei
Ling Liu
AAML
45
29
0
14 Sep 2020
Why I'm not Answering: Understanding Determinants of Classification of an Abstaining Classifier for Cancer Pathology Reports
S. Dhaubhadel
J. Mohd-Yusof
K. Ganguly
Gopinath Chennupati
S. Thulasidasan
...
Georgia D. Tourassi
Linda Coyle
Lynne Penberthy
Benjamin H. McMahon
T. Bhattacharya
14
2
0
10 Sep 2020
Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective
G. R. Machado
Eugênio Silva
R. Goldschmidt
AAML
38
157
0
08 Sep 2020
Transparency and granularity in the SP Theory of Intelligence and its realisation in the SP Computer Model
J. Wolff
26
5
0
07 Sep 2020
Problems in AI research and how the SP System may help to solve them
J. G. Wolff
6
2
0
02 Sep 2020
Adversarially Robust Neural Architectures
Minjing Dong
Yanxi Li
Yunhe Wang
Chang Xu
AAML
OOD
49
48
0
02 Sep 2020
Inducing Predictive Uncertainty Estimation for Face Recognition
Weidi Xie
J. Byrne
Andrew Zisserman
CVBM
24
16
0
01 Sep 2020
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
Lingkai Kong
Jimeng Sun
Chao Zhang
UQCV
61
103
0
24 Aug 2020
Perceptual underwater image enhancement with deep learning and physical priors
Long Chen
Zheheng Jiang
Lei Tong
Zhihua Liu
Aite Zhao
Qianni Zhang
Junyu Dong
Huiyu Zhou
29
33
0
21 Aug 2020
A Survey on Assessing the Generalization Envelope of Deep Neural Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples
Julia Lust
Alexandru Paul Condurache
UQCV
AAML
AI4CE
29
8
0
21 Aug 2020
Feature Extraction Functions for Neural Logic Rule Learning
Shashank Gupta
A. Robles-Kelly
Mohamed Reda Bouadjenek
NAI
38
0
0
14 Aug 2020
Optimizing Information Loss Towards Robust Neural Networks
Philip Sperl
Konstantin Böttinger
AAML
26
3
0
07 Aug 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
34
73
0
07 Aug 2020
Vulnerability Under Adversarial Machine Learning: Bias or Variance?
Hossein Aboutalebi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
AAML
8
3
0
01 Aug 2020
A General Framework For Detecting Anomalous Inputs to DNN Classifiers
Jayaram Raghuram
Varun Chandrasekaran
S. Jha
Suman Banerjee
AAML
36
33
0
29 Jul 2020
AI Data poisoning attack: Manipulating game AI of Go
Junli Shen
Maocai Xia
AAML
9
3
0
23 Jul 2020
Inverting the Feature Visualization Process for Feedforward Neural Networks
Christian Reinbold
Rüdiger Westermann
FAtt
11
0
0
21 Jul 2020
AdvFoolGen: Creating Persistent Troubles for Deep Classifiers
Yuzhen Ding
Nupur Thakur
Baoxin Li
AAML
35
3
0
20 Jul 2020
DiffRNN: Differential Verification of Recurrent Neural Networks
Sara Mohammadinejad
Brandon Paulsen
Chao Wang
Jyotirmoy V. Deshmukh
42
12
0
20 Jul 2020
Evaluating a Simple Retraining Strategy as a Defense Against Adversarial Attacks
Nupur Thakur
Yuzhen Ding
Baoxin Li
AAML
11
3
0
20 Jul 2020
Technologies for Trustworthy Machine Learning: A Survey in a Socio-Technical Context
Ehsan Toreini
Mhairi Aitken
Kovila P. L. Coopamootoo
Karen Elliott
Vladimiro González-Zelaya
P. Missier
Magdalene Ng
Aad van Moorsel
39
17
0
17 Jul 2020
Camera Bias in a Fine Grained Classification Task
Philip T. G. Jackson
Stephen Bonner
Ning Jia
Christopher J. Holder
Jonathan Stonehouse
B. Obara
6
4
0
16 Jul 2020
Certifiably Adversarially Robust Detection of Out-of-Distribution Data
Julian Bitterwolf
Alexander Meinke
Matthias Hein
10
9
0
16 Jul 2020
Nested Learning For Multi-Granular Tasks
Raphaël Achddou
J. Matias Di Martino
Guillermo Sapiro
22
1
0
13 Jul 2020
Seeing eye-to-eye? A comparison of object recognition performance in humans and deep convolutional neural networks under image manipulation
Leonard E. van Dyck
W. Gruber
42
3
0
13 Jul 2020
Contrastive Training for Improved Out-of-Distribution Detection
Jim Winkens
Rudy Bunel
Abhijit Guha Roy
Robert Stanforth
Vivek Natarajan
...
Alan Karthikesalingam
Simon A. A. Kohl
taylan. cemgil
S. M. Ali Eslami
Olaf Ronneberger
OODD
41
236
0
10 Jul 2020
Boundary thickness and robustness in learning models
Yaoqing Yang
Rekha Khanna
Yaodong Yu
A. Gholami
Kurt Keutzer
Joseph E. Gonzalez
Kannan Ramchandran
Michael W. Mahoney
OOD
23
40
0
09 Jul 2020
Detection of Gravitational Waves Using Bayesian Neural Networks
Yu-Chiung Lin
Jiun-Huei Proty Wu
8
27
0
08 Jul 2020
MCU-Net: A framework towards uncertainty representations for decision support system patient referrals in healthcare contexts
Nabeel Seedat
OOD
14
5
0
08 Jul 2020
Soft Labeling Affects Out-of-Distribution Detection of Deep Neural Networks
Doyup Lee
Yeongjae Cheon
20
6
0
07 Jul 2020
Confidence-Aware Learning for Deep Neural Networks
J. Moon
Jihyo Kim
Younghak Shin
Sangheum Hwang
UQCV
38
146
0
03 Jul 2020
Outlier Detection through Null Space Analysis of Neural Networks
Matthew Cook
A. Zare
P. Gader
12
17
0
02 Jul 2020
Are there any óbject detectors' in the hidden layers of CNNs trained to identify objects or scenes?
E. Gale
Nicholas Martin
R. Blything
Anh Nguyen
J. Bowers
31
14
0
02 Jul 2020
Opportunities and Challenges in Deep Learning Adversarial Robustness: A Survey
S. Silva
Peyman Najafirad
AAML
OOD
31
132
0
01 Jul 2020
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
41
628
0
01 Jul 2020
Generating Adversarial Examples with an Optimized Quality
Aminollah Khormali
Daehun Nyang
David A. Mohaisen
AAML
10
1
0
30 Jun 2020
Classification Confidence Estimation with Test-Time Data-Augmentation
Yuval Bahat
Gregory Shakhnarovich
22
17
0
30 Jun 2020
The Effect of Optimization Methods on the Robustness of Out-of-Distribution Detection Approaches
Vahdat Abdelzad
Krzysztof Czarnecki
Rick Salay
32
1
0
25 Jun 2020
Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders
Nina Shvetsova
Bart Bakker
Irina Fedulova
H. Schulz
Dmitry V. Dylov
13
82
0
23 Jun 2020
Self-Knowledge Distillation with Progressive Refinement of Targets
Kyungyul Kim
Byeongmoon Ji
Doyoung Yoon
Sangheum Hwang
ODL
27
178
0
22 Jun 2020
Towards an Adversarially Robust Normalization Approach
Muhammad Awais
Fahad Shamshad
Sung-Ho Bae
AAML
OOD
52
19
0
19 Jun 2020
Adversarial Attacks for Multi-view Deep Models
Xuli Sun
Shiliang Sun
AAML
9
0
0
19 Jun 2020
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
67
2,372
0
18 Jun 2020
The shape and simplicity biases of adversarially robust ImageNet-trained CNNs
Peijie Chen
Chirag Agarwal
Anh Totti Nguyen
AAML
8
17
0
16 Jun 2020
Debona: Decoupled Boundary Network Analysis for Tighter Bounds and Faster Adversarial Robustness Proofs
Christopher Brix
T. Noll
AAML
25
10
0
16 Jun 2020
SPLASH: Learnable Activation Functions for Improving Accuracy and Adversarial Robustness
Mohammadamin Tavakoli
Forest Agostinelli
Pierre Baldi
AAML
FAtt
36
39
0
16 Jun 2020
Improving Adversarial Robustness via Unlabeled Out-of-Domain Data
Zhun Deng
Linjun Zhang
Amirata Ghorbani
James Zou
47
32
0
15 Jun 2020
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
46
101
0
15 Jun 2020
The Pitfalls of Simplicity Bias in Neural Networks
Harshay Shah
Kaustav Tamuly
Aditi Raghunathan
Prateek Jain
Praneeth Netrapalli
AAML
18
352
0
13 Jun 2020
Towards Robust Pattern Recognition: A Review
Xu-Yao Zhang
Cheng-Lin Liu
C. Suen
OOD
HAI
35
103
0
12 Jun 2020
Previous
1
2
3
...
14
15
16
...
27
28
29
Next