ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.6806
  4. Cited By
Striving for Simplicity: The All Convolutional Net
v1v2v3 (latest)

Striving for Simplicity: The All Convolutional Net

International Conference on Learning Representations (ICLR), 2014
21 December 2014
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
    FAtt
ArXiv (abs)PDFHTML

Papers citing "Striving for Simplicity: The All Convolutional Net"

50 / 1,916 papers shown
Deep Hierarchy Quantization Compression algorithm based on Dynamic
  Sampling
Deep Hierarchy Quantization Compression algorithm based on Dynamic Sampling
W. Jiang
Gang Liu
Xiaofeng Chen
Yipeng Zhou
FedML
62
0
0
30 Dec 2022
Human Activity Recognition from Wi-Fi CSI Data Using Principal
  Component-Based Wavelet CNN
Human Activity Recognition from Wi-Fi CSI Data Using Principal Component-Based Wavelet CNNSocial Science Research Network (SSRN), 2022
I. A. Showmik
Tahsina Farah Sanam
H. Imtiaz
120
18
0
26 Dec 2022
Explainable AI for Bioinformatics: Methods, Tools, and Applications
Explainable AI for Bioinformatics: Methods, Tools, and Applications
Md. Rezaul Karim
Tanhim Islam
Oya Beyan
Christoph Lange
Michael Cochez
Dietrich-Rebholz Schuhmann
Stefan Decker
355
112
0
25 Dec 2022
DExT: Detector Explanation Toolkit
DExT: Detector Explanation Toolkit
Deepan Padmanabhan
Paul G. Plöger
Octavio Arriaga
Matias Valdenegro-Toro
209
2
0
21 Dec 2022
When and Why Test Generators for Deep Learning Produce Invalid Inputs:
  an Empirical Study
When and Why Test Generators for Deep Learning Produce Invalid Inputs: an Empirical StudyInternational Conference on Software Engineering (ICSE), 2022
Vincenzo Riccio
Paolo Tonella
AAML
156
35
0
21 Dec 2022
Bort: Towards Explainable Neural Networks with Bounded Orthogonal
  Constraint
Bort: Towards Explainable Neural Networks with Bounded Orthogonal ConstraintInternational Conference on Learning Representations (ICLR), 2022
Borui Zhang
Wenzhao Zheng
Jie Zhou
Jiwen Lu
AAML
183
8
0
18 Dec 2022
Domain Generalization by Learning and Removing Domain-specific Features
Domain Generalization by Learning and Removing Domain-specific FeaturesNeural Information Processing Systems (NeurIPS), 2022
Yuzhu Ding
Lei Wang
Binxin Liang
Shuming Liang
Yang Wang
Fangxiao Chen
OOD
215
58
0
14 Dec 2022
Comparing the Decision-Making Mechanisms by Transformers and CNNs via
  Explanation Methods
Comparing the Decision-Making Mechanisms by Transformers and CNNs via Explanation MethodsComputer Vision and Pattern Recognition (CVPR), 2022
Ming-Xiu Jiang
Saeed Khorram
Li Fuxin
FAtt
464
15
0
13 Dec 2022
Utilizing Mutations to Evaluate Interpretability of Neural Networks on
  Genomic Data
Utilizing Mutations to Evaluate Interpretability of Neural Networks on Genomic Data
Utku Ozbulak
Solha Kang
Jasper Zuallaert
Stephen Depuydt
J. Vankerschaver
128
0
0
12 Dec 2022
Post hoc Explanations may be Ineffective for Detecting Unknown Spurious
  Correlation
Post hoc Explanations may be Ineffective for Detecting Unknown Spurious CorrelationInternational Conference on Learning Representations (ICLR), 2022
Julius Adebayo
M. Muelly
H. Abelson
Been Kim
240
93
0
09 Dec 2022
COmic: Convolutional Kernel Networks for Interpretable End-to-End
  Learning on (Multi-)Omics Data
COmic: Convolutional Kernel Networks for Interpretable End-to-End Learning on (Multi-)Omics Data
Jonas C. Ditz
Bernhard Reuter
Nícolas Pfeifer
239
3
0
02 Dec 2022
Optimizing Explanations by Network Canonization and Hyperparameter
  Search
Optimizing Explanations by Network Canonization and Hyperparameter Search
Frederik Pahde
Galip Umit Yolcu
Alexander Binder
Wojciech Samek
Sebastian Lapuschkin
297
12
0
30 Nov 2022
FedGPO: Heterogeneity-Aware Global Parameter Optimization for Efficient
  Federated Learning
FedGPO: Heterogeneity-Aware Global Parameter Optimization for Efficient Federated LearningIEEE International Symposium on Workload Characterization (IISWC), 2022
Young Geun Kim
Carole-Jean Wu
FedML
222
5
0
30 Nov 2022
Interpretations Cannot Be Trusted: Stealthy and Effective Adversarial
  Perturbations against Interpretable Deep Learning
Interpretations Cannot Be Trusted: Stealthy and Effective Adversarial Perturbations against Interpretable Deep Learning
Eldor Abdukhamidov
Mohammed Abuhamad
Simon S. Woo
Eric Chan-Tin
Tamer Abuhmed
AAML
156
9
0
29 Nov 2022
Towards More Robust Interpretation via Local Gradient Alignment
Towards More Robust Interpretation via Local Gradient AlignmentAAAI Conference on Artificial Intelligence (AAAI), 2022
Sunghwan Joo
Seokhyeon Jeong
Juyeon Heo
Adrian Weller
Taesup Moon
FAtt
247
7
0
29 Nov 2022
Foiling Explanations in Deep Neural Networks
Foiling Explanations in Deep Neural Networks
Snir Vitrack Tamam
Raz Lapid
Moshe Sipper
AAML
214
21
0
27 Nov 2022
Attribution-based XAI Methods in Computer Vision: A Review
Attribution-based XAI Methods in Computer Vision: A Review
Kumar Abhishek
Deeksha Kamath
154
26
0
27 Nov 2022
Looking at the posterior: accuracy and uncertainty of neural-network
  predictions
Looking at the posterior: accuracy and uncertainty of neural-network predictions
Hampus Linander
Oleksandr Balabanov
Henry Yang
Bernhard Mehlig
UQCVUDBDL
269
2
0
26 Nov 2022
Evaluating Feature Attribution Methods for Electrocardiogram
Evaluating Feature Attribution Methods for Electrocardiogram
J. Suh
Jimyeong Kim
Euna Jung
Wonjong Rhee
FAtt
183
3
0
23 Nov 2022
Shortcomings of Top-Down Randomization-Based Sanity Checks for
  Evaluations of Deep Neural Network Explanations
Shortcomings of Top-Down Randomization-Based Sanity Checks for Evaluations of Deep Neural Network ExplanationsComputer Vision and Pattern Recognition (CVPR), 2022
Alexander Binder
Leander Weber
Sebastian Lapuschkin
G. Montavon
Klaus-Robert Muller
Wojciech Samek
FAttAAML
170
32
0
22 Nov 2022
Explaining Image Classifiers with Multiscale Directional Image
  Representation
Explaining Image Classifiers with Multiscale Directional Image RepresentationComputer Vision and Pattern Recognition (CVPR), 2022
Stefan Kolek
Robert Windesheim
Héctor Andrade-Loarca
Gitta Kutyniok
Ron Levie
215
8
0
22 Nov 2022
CRAFT: Concept Recursive Activation FacTorization for Explainability
CRAFT: Concept Recursive Activation FacTorization for ExplainabilityComputer Vision and Pattern Recognition (CVPR), 2022
Thomas Fel
Agustin Picard
Louis Bethune
Thibaut Boissin
David Vigouroux
Julien Colin
Rémi Cadène
Thomas Serre
355
168
0
17 Nov 2022
Parameter-Efficient Transformer with Hybrid Axial-Attention for Medical
  Image Segmentation
Parameter-Efficient Transformer with Hybrid Axial-Attention for Medical Image Segmentation
Yiyue Hu
Lei Zhang
Nan Mu
Leijun Liu
ViTMedIm
111
1
0
17 Nov 2022
Explainable, Domain-Adaptive, and Federated Artificial Intelligence in
  Medicine
Explainable, Domain-Adaptive, and Federated Artificial Intelligence in MedicineIEEE/CAA Journal of Automatica Sinica (JCAS), 2022
Ahmad Chaddad
Qizong Lu
Jiali Li
Y. Katib
R. Kateb
C. Tanougast
Ahmed Bouridane
Ahmed Abdulkadir
OOD
252
55
0
17 Nov 2022
Explaining Cross-Domain Recognition with Interpretable Deep Classifier
Explaining Cross-Domain Recognition with Interpretable Deep Classifier
Yiheng Zhang
Ting Yao
Zhaofan Qiu
Tao Mei
OOD
192
3
0
15 Nov 2022
A Rigorous Study Of The Deep Taylor Decomposition
A Rigorous Study Of The Deep Taylor Decomposition
Leon Sixt
Tim Landgraf
FAttAAML
154
7
0
14 Nov 2022
What Makes a Good Explanation?: A Harmonized View of Properties of
  Explanations
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAIFAtt
406
24
0
10 Nov 2022
On the Robustness of Explanations of Deep Neural Network Models: A
  Survey
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAIFAttAAML
268
9
0
09 Nov 2022
Privacy Meets Explainability: A Comprehensive Impact Benchmark
Privacy Meets Explainability: A Comprehensive Impact Benchmark
S. Saifullah
Dominique Mercier
Adriano Lucieri
Andreas Dengel
Sheraz Ahmed
169
21
0
08 Nov 2022
Knowledge is Power: Understanding Causality Makes Legal judgment
  Prediction Models More Generalizable and Robust
Knowledge is Power: Understanding Causality Makes Legal judgment Prediction Models More Generalizable and Robust
Haotian Chen
Lingwei Zhang
Yiran Liu
Fanchao Chen
Yang Yu
AILawELM
203
7
0
06 Nov 2022
Exploring Explainability Methods for Graph Neural Networks
Exploring Explainability Methods for Graph Neural Networks
Harsh Patel
Shivam Sahni
106
0
0
03 Nov 2022
Explainable Deep Learning to Profile Mitochondrial Disease Using High
  Dimensional Protein Expression Data
Explainable Deep Learning to Profile Mitochondrial Disease Using High Dimensional Protein Expression Data
Atif Khan
C. Lawless
Amy Vincent
Satish Pilla
S. Ramesh
A. Mcgough
147
0
0
31 Oct 2022
PAGE: Prototype-Based Model-Level Explanations for Graph Neural Networks
PAGE: Prototype-Based Model-Level Explanations for Graph Neural NetworksIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Yong-Min Shin
Sun-Woo Kim
Won-Yong Shin
186
10
0
31 Oct 2022
Spectrograms Are Sequences of Patches
Spectrograms Are Sequences of Patches
Leyi Zhao
Yi Li
SSL
98
0
0
28 Oct 2022
Explaining the Explainers in Graph Neural Networks: a Comparative Study
Explaining the Explainers in Graph Neural Networks: a Comparative StudyACM Computing Surveys (ACM CSUR), 2022
Antonio Longa
Steve Azzolin
G. Santin
G. Cencetti
Pietro Lio
Bruno Lepri
Baptiste Caramiaux
342
46
0
27 Oct 2022
HesScale: Scalable Computation of Hessian Diagonals
HesScale: Scalable Computation of Hessian Diagonals
Mohamed Elsayed
A. R. Mahmood
222
9
0
20 Oct 2022
XC: Exploring Quantitative Use Cases for Explanations in 3D Object
  Detection
XC: Exploring Quantitative Use Cases for Explanations in 3D Object Detection
Sunsheng Gu
Vahdat Abdelzad
Krzysztof Czarnecki
170
1
0
20 Oct 2022
Similarity of Neural Architectures using Adversarial Attack
  Transferability
Similarity of Neural Architectures using Adversarial Attack TransferabilityEuropean Conference on Computer Vision (ECCV), 2022
Ian Ryu
Dongyoon Han
Byeongho Heo
Song Park
Sanghyuk Chun
Jong-Seok Lee
AAML
539
3
0
20 Oct 2022
Towards Better Guided Attention and Human Knowledge Insertion in Deep
  Convolutional Neural Networks
Towards Better Guided Attention and Human Knowledge Insertion in Deep Convolutional Neural Networks
Ankit Gupta
I. Sintorn
HAI
204
1
0
20 Oct 2022
Analysing Training-Data Leakage from Gradients through Linear Systems
  and Gradient Matching
Analysing Training-Data Leakage from Gradients through Linear Systems and Gradient MatchingBritish Machine Vision Conference (BMVC), 2022
Cangxiong Chen
Neill D. F. Campbell
FedML
106
1
0
20 Oct 2022
Gradient Backpropagation based Feature Attribution to Enable
  Explainable-AI on the Edge
Gradient Backpropagation based Feature Attribution to Enable Explainable-AI on the EdgeIEEE/IFIP International Conference on Very Large Scale Integration of System-on-Chip (VLSI-SoC), 2022
Ashwin Bhat
A. S. Assoa
A. Raychowdhury
133
11
0
19 Oct 2022
ATCON: Attention Consistency for Vision Models
ATCON: Attention Consistency for Vision ModelsIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2022
Ali Mirzazadeh
Florian Dubost
M. Pike
Krish Maniar
Max Zuo
Christopher Lee-Messer
D. Rubin
85
2
0
18 Oct 2022
This Patient Looks Like That Patient: Prototypical Networks for
  Interpretable Diagnosis Prediction from Clinical Text
This Patient Looks Like That Patient: Prototypical Networks for Interpretable Diagnosis Prediction from Clinical Text
Betty van Aken
Jens-Michalis Papaioannou
M. Naik
G. Eleftheriadis
Wolfgang Nejdl
Felix Alexander Gers
Alexander Loser
266
15
0
16 Oct 2022
A Survey on Explainable Anomaly Detection
A Survey on Explainable Anomaly DetectionACM Transactions on Knowledge Discovery from Data (TKDD), 2022
Zhong Li
Yuxuan Zhu
M. Leeuwen
344
132
0
13 Oct 2022
Toward the application of XAI methods in EEG-based systems
Toward the application of XAI methods in EEG-based systems
Andrea Apicella
Francesco Isgrò
A. Pollastro
R. Prevete
OODAI4TS
102
19
0
12 Oct 2022
AD-DROP: Attribution-Driven Dropout for Robust Language Model
  Fine-Tuning
AD-DROP: Attribution-Driven Dropout for Robust Language Model Fine-TuningNeural Information Processing Systems (NeurIPS), 2022
Tao Yang
Jinghao Deng
Xiaojun Quan
Qifan Wang
Shaoliang Nie
184
6
0
12 Oct 2022
The Unreasonable Effectiveness of Fully-Connected Layers for Low-Data
  Regimes
The Unreasonable Effectiveness of Fully-Connected Layers for Low-Data RegimesNeural Information Processing Systems (NeurIPS), 2022
Peter Kocsis
Peter Súkeník
Guillem Brasó
Matthias Nießner
Laura Leal-Taixé
Ismail Elezi
131
8
0
11 Oct 2022
Quantitative Metrics for Evaluating Explanations of Video DeepFake
  Detectors
Quantitative Metrics for Evaluating Explanations of Video DeepFake DetectorsBritish Machine Vision Conference (BMVC), 2022
Federico Baldassarre
Quentin Debard
Gonzalo Fiz Pontiveros
Tri Kurniawan Wijaya
223
5
0
07 Oct 2022
Critical Learning Periods for Multisensory Integration in Deep Networks
Critical Learning Periods for Multisensory Integration in Deep NetworksComputer Vision and Pattern Recognition (CVPR), 2022
Michael Kleinman
Alessandro Achille
Stefano Soatto
246
14
0
06 Oct 2022
MAtt: A Manifold Attention Network for EEG Decoding
MAtt: A Manifold Attention Network for EEG DecodingNeural Information Processing Systems (NeurIPS), 2022
Yue Pan
Jing-Lun Chou
Chunshan Wei
150
63
0
05 Oct 2022
Previous
123...91011...373839
Next