ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.05336
  4. Cited By
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks

Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks

18 February 2015
José Miguel Hernández-Lobato
Ryan P. Adams
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks"

50 / 109 papers shown
Title
Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Xueqiong Yuan
Jipeng Li
E. Kuruoglu
UQCV
BDL
38
0
0
21 Jan 2025
Annealed Multiple Choice Learning: Overcoming limitations of Winner-takes-all with annealing
Annealed Multiple Choice Learning: Overcoming limitations of Winner-takes-all with annealing
David Perera
Victor Letzelter
Théo Mariotte
Adrien Cortés
Mickaël Chen
S. Essid
Ga¨el Richard
64
2
0
20 Jan 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
79
1
0
25 Nov 2024
ELBOing Stein: Variational Bayes with Stein Mixture Inference
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
45
1
0
30 Oct 2024
Uncertainty-aware Reward Model: Teaching Reward Models to Know What is Unknown
Uncertainty-aware Reward Model: Teaching Reward Models to Know What is Unknown
Xingzhou Lou
Dong Yan
Wei Shen
Yuzi Yan
Jian Xie
Junge Zhang
45
21
0
01 Oct 2024
Uncertainty Quantification in Seismic Inversion Through Integrated
  Importance Sampling and Ensemble Methods
Uncertainty Quantification in Seismic Inversion Through Integrated Importance Sampling and Ensemble Methods
Luping Qu
Mauricio Araya-Polo
Laurent Demanet
45
0
0
10 Sep 2024
Gradient-free variational learning with conditional mixture networks
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
27
2
0
29 Aug 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
64
17
0
07 Feb 2024
Favour: FAst Variance Operator for Uncertainty Rating
Favour: FAst Variance Operator for Uncertainty Rating
Thomas Dybdahl Ahle
Sahar Karimi
Peter Tak Peter Tang
BDL
19
0
0
21 Nov 2023
Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI Generation and Diffuse Glioma Growth Prediction
Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI Generation and Diffuse Glioma Growth Prediction
Qinghui Liu
E. Fuster-García
I. T. Hovden
Donatas Sederevičius
Karoline Skogen
...
Till Schellhorn
P. Brandal
A. Bjørnerud
K. Emblem
Kyrre Eeg Emblem
23
3
0
11 Sep 2023
Likelihood-ratio-based confidence intervals for neural networks
Likelihood-ratio-based confidence intervals for neural networks
Laurens Sluijterman
Eric Cator
Tom Heskes
UQCV
19
0
0
04 Aug 2023
Function-Space Regularization for Deep Bayesian Classification
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCV
BDL
28
1
0
12 Jul 2023
Cheap and Deterministic Inference for Deep State-Space Models of
  Interacting Dynamical Systems
Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
BDL
25
6
0
02 May 2023
UATTA-EB: Uncertainty-Aware Test-Time Augmented Ensemble of BERTs for
  Classifying Common Mental Illnesses on Social Media Posts
UATTA-EB: Uncertainty-Aware Test-Time Augmented Ensemble of BERTs for Classifying Common Mental Illnesses on Social Media Posts
Pratinav Seth
Mihir Agarwal
AI4MH
16
1
0
10 Apr 2023
Dropout Injection at Test Time for Post Hoc Uncertainty Quantification
  in Neural Networks
Dropout Injection at Test Time for Post Hoc Uncertainty Quantification in Neural Networks
Emanuele Ledda
Giorgio Fumera
Fabio Roli
BDL
UQCV
27
14
0
06 Feb 2023
Client Selection for Federated Bayesian Learning
Client Selection for Federated Bayesian Learning
Jiarong Yang
Yuan Liu
Rahif Kassab
FedML
22
11
0
11 Dec 2022
Are you using test log-likelihood correctly?
Are you using test log-likelihood correctly?
Sameer K. Deshpande
Soumya K. Ghosh
Tin D. Nguyen
Tamara Broderick
19
7
0
01 Dec 2022
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step
  Inference
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference
N. Durasov
Nik Dorndorf
Hieu M. Le
Pascal Fua
UQCV
15
10
0
21 Nov 2022
DC-Check: A Data-Centric AI checklist to guide the development of
  reliable machine learning systems
DC-Check: A Data-Centric AI checklist to guide the development of reliable machine learning systems
Nabeel Seedat
F. Imrie
M. Schaar
27
12
0
09 Nov 2022
Nonparametric Probabilistic Regression with Coarse Learners
Nonparametric Probabilistic Regression with Coarse Learners
B. Lucena
22
0
0
28 Oct 2022
On the optimization and pruning for Bayesian deep learning
On the optimization and pruning for Bayesian deep learning
X. Ke
Yanan Fan
BDL
UQCV
22
1
0
24 Oct 2022
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
42
19
0
23 Oct 2022
Packed-Ensembles for Efficient Uncertainty Estimation
Packed-Ensembles for Efficient Uncertainty Estimation
Olivier Laurent
Adrien Lafage
Enzo Tartaglione
Geoffrey Daniel
Jean-Marc Martinez
Andrei Bursuc
Gianni Franchi
OODD
30
32
0
17 Oct 2022
Constructing Prediction Intervals with Neural Networks: An Empirical
  Evaluation of Bootstrapping and Conformal Inference Methods
Constructing Prediction Intervals with Neural Networks: An Empirical Evaluation of Bootstrapping and Conformal Inference Methods
Alex Contarino
Christine M. Schubert-Kabban
Chancellor Johnstone
Fairul Mohd-Zaid
28
3
0
07 Oct 2022
Scale-invariant Bayesian Neural Networks with Connectivity Tangent
  Kernel
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel
Sungyub Kim
Si-hun Park
Kyungsu Kim
Eunho Yang
BDL
24
4
0
30 Sep 2022
Latent Discriminant deterministic Uncertainty
Latent Discriminant deterministic Uncertainty
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
David Filliat
UQCV
14
18
0
20 Jul 2022
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
Bartosz Wójcik
J. Grela
Marek Śmieja
Krzysztof Misztal
Jacek Tabor
UQCV
20
4
0
28 Jun 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
25
28
0
17 Jun 2022
CARD: Classification and Regression Diffusion Models
CARD: Classification and Regression Diffusion Models
Xizewen Han
Huangjie Zheng
Mingyuan Zhou
DiffM
38
107
0
15 Jun 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference
  with Markovian Gradients
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
J. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
24
8
0
13 Jun 2022
Density Regression and Uncertainty Quantification with Bayesian Deep
  Noise Neural Networks
Density Regression and Uncertainty Quantification with Bayesian Deep Noise Neural Networks
Daiwei Zhang
Tianci Liu
Jian Kang
BDL
UQCV
22
2
0
12 Jun 2022
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
27
196
0
07 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
11
6
0
30 May 2022
Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case
  Study on COVID-19 Chest X-ray Image
Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case Study on COVID-19 Chest X-ray Image
Lucy Nwosu
Xiangfang Li
Lijun Qian
Seungchan Kim
Xishuang Dong
29
3
0
27 May 2022
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
BDL
AAML
72
8
0
27 May 2022
A General Framework for quantifying Aleatoric and Epistemic uncertainty
  in Graph Neural Networks
A General Framework for quantifying Aleatoric and Epistemic uncertainty in Graph Neural Networks
Sai Munikoti
D. Agarwal
Laya Das
Balasubramaniam Natarajan
BDL
UD
18
13
0
20 May 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
21
3
0
30 Jan 2022
GradTail: Learning Long-Tailed Data Using Gradient-based Sample
  Weighting
GradTail: Learning Long-Tailed Data Using Gradient-based Sample Weighting
Zhao Chen
Vincent Casser
Henrik Kretzschmar
Dragomir Anguelov
20
5
0
16 Jan 2022
A Kernel-Expanded Stochastic Neural Network
A Kernel-Expanded Stochastic Neural Network
Y. Sun
F. Liang
10
5
0
14 Jan 2022
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior
  Predictive Checks with Deep Learning
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior Predictive Checks with Deep Learning
Achintya Gopal
UQCV
21
1
0
02 Dec 2021
The Devil is in the Margin: Margin-based Label Smoothing for Network
  Calibration
The Devil is in the Margin: Margin-based Label Smoothing for Network Calibration
Bingyuan Liu
Ismail Ben Ayed
Adrian Galdran
Jose Dolz
UQCV
15
65
0
30 Nov 2021
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
Romain Egele
R. Maulik
Krishnan Raghavan
Bethany Lusch
Isabelle M Guyon
Prasanna Balaprakash
UQCV
OOD
BDL
20
45
0
26 Oct 2021
Analysis of the first Genetic Engineering Attribution Challenge
Analysis of the first Genetic Engineering Attribution Challenge
O. Crook
K. L. Warmbrod
G. Lipstein
Christine Chung
Christopher W. Bakerlee
...
Shelly R. Holland
Jacob Swett
K. Esvelt
E. C. Alley
W. Bradshaw
11
8
0
14 Oct 2021
Reliable Neural Networks for Regression Uncertainty Estimation
Reliable Neural Networks for Regression Uncertainty Estimation
Tony Tohme
Kevin Vanslette
K. Youcef-Toumi
UQCV
BDL
16
15
0
16 Sep 2021
Stein Variational Gradient Descent with Multiple Kernel
Stein Variational Gradient Descent with Multiple Kernel
Qingzhong Ai
Shiyu Liu
Lirong He
Zenglin Xu
9
4
0
20 Jul 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
48
73
0
09 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
30
1,108
0
07 Jul 2021
Post-hoc loss-calibration for Bayesian neural networks
Post-hoc loss-calibration for Bayesian neural networks
Meet P. Vadera
S. Ghosh
Kenney Ng
Benjamin M. Marlin
UQCV
BDL
22
7
0
13 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
24
124
0
14 May 2021
Exploring Uncertainty in Deep Learning for Construction of Prediction
  Intervals
Exploring Uncertainty in Deep Learning for Construction of Prediction Intervals
Yuandu Lai
Yucheng Shi
Yahong Han
Yunfeng Shao
Meiyu Qi
Bingshuai Li
UQCV
25
15
0
27 Apr 2021
123
Next