ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.05336
  4. Cited By
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks

Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks

18 February 2015
José Miguel Hernández-Lobato
Ryan P. Adams
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks"

10 / 109 papers shown
Title
Bayesian Semisupervised Learning with Deep Generative Models
Bayesian Semisupervised Learning with Deep Generative Models
Jonathan Gordon
José Miguel Hernández-Lobato
BDL
UQCV
GAN
17
27
0
29 Jun 2017
Parallel and Distributed Thompson Sampling for Large-scale Accelerated
  Exploration of Chemical Space
Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space
José Miguel Hernández-Lobato
James Requeima
Edward O. Pyzer-Knapp
Alán Aspuru-Guzik
17
177
0
06 Jun 2017
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
Yingzhen Li
Y. Gal
UQCV
BDL
38
195
0
08 Mar 2017
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
Hao Wang
Dit-Yan Yeung
BDL
16
223
0
24 Aug 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
19
1,067
0
16 Aug 2016
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural
  Networks
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
14
320
0
23 Dec 2015
Bayesian Dark Knowledge
Bayesian Dark Knowledge
Masashi Sugiyama
Vivek Rathod
R. Garnett
Max Welling
BDL
UQCV
20
257
0
14 Jun 2015
A Scale Mixture Perspective of Multiplicative Noise in Neural Networks
A Scale Mixture Perspective of Multiplicative Noise in Neural Networks
Eric T. Nalisnick
Anima Anandkumar
Padhraic Smyth
19
19
0
10 Jun 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
27
1,489
0
08 Jun 2015
Early Stopping is Nonparametric Variational Inference
Early Stopping is Nonparametric Variational Inference
D. Maclaurin
D. Duvenaud
Ryan P. Adams
BDL
22
94
0
06 Apr 2015
Previous
123