ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.05336
  4. Cited By
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks

Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks

18 February 2015
José Miguel Hernández-Lobato
Ryan P. Adams
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks"

50 / 109 papers shown
Title
Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
  in MOOC Forums
Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need in MOOC Forums
Jialin Yu
Laila Alrajhi
Anoushka Harit
Zhongtian Sun
Alexandra I. Cristea
Lei Shi
BDL
UQCV
16
8
0
26 Apr 2021
On Batch Normalisation for Approximate Bayesian Inference
On Batch Normalisation for Approximate Bayesian Inference
Jishnu Mukhoti
P. Dokania
Philip H. S. Torr
Y. Gal
BDL
UQCV
21
4
0
24 Dec 2020
Confidence Estimation via Auxiliary Models
Confidence Estimation via Auxiliary Models
Charles Corbière
Nicolas Thome
A. Saporta
Tuan-Hung Vu
Matthieu Cord
P. Pérez
TPM
21
47
0
11 Dec 2020
The Hidden Uncertainty in a Neural Networks Activations
The Hidden Uncertainty in a Neural Networks Activations
Janis Postels
Hermann Blum
Yannick Strümpler
César Cadena
Roland Siegwart
Luc Van Gool
Federico Tombari
UQCV
14
22
0
05 Dec 2020
Provably-Robust Runtime Monitoring of Neuron Activation Patterns
Provably-Robust Runtime Monitoring of Neuron Activation Patterns
Chih-Hong Cheng
AAML
17
12
0
24 Nov 2020
Failure Prediction by Confidence Estimation of Uncertainty-Aware
  Dirichlet Networks
Failure Prediction by Confidence Estimation of Uncertainty-Aware Dirichlet Networks
Theodoros Tsiligkaridis
UQCV
12
7
0
19 Oct 2020
A Contour Stochastic Gradient Langevin Dynamics Algorithm for
  Simulations of Multi-modal Distributions
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
34
27
0
19 Oct 2020
Why have a Unified Predictive Uncertainty? Disentangling it using Deep
  Split Ensembles
Why have a Unified Predictive Uncertainty? Disentangling it using Deep Split Ensembles
U. Sarawgi
W. Zulfikar
Rishab Khincha
Pattie Maes
PER
UQCV
BDL
UD
11
7
0
25 Sep 2020
Federated Generalized Bayesian Learning via Distributed Stein
  Variational Gradient Descent
Federated Generalized Bayesian Learning via Distributed Stein Variational Gradient Descent
Rahif Kassab
Osvaldo Simeone
FedML
10
45
0
11 Sep 2020
Bayesian Neural Networks: An Introduction and Survey
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
19
199
0
22 Jun 2020
Estimating Model Uncertainty of Neural Networks in Sparse Information
  Form
Estimating Model Uncertainty of Neural Networks in Sparse Information Form
Jongseo Lee
Matthias Humt
Jianxiang Feng
Rudolph Triebel
BDL
UQCV
15
45
0
20 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
17
100
0
15 Jun 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
32
111
0
11 Jun 2020
Efficient Ensemble Model Generation for Uncertainty Estimation with
  Bayesian Approximation in Segmentation
Efficient Ensemble Model Generation for Uncertainty Estimation with Bayesian Approximation in Segmentation
Hong Joo Lee
S. T. Kim
Hakmin Lee
Nassir Navab
Yong Man Ro
UQCV
6
7
0
21 May 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
13
60
0
17 May 2020
TRADI: Tracking deep neural network weight distributions for uncertainty
  estimation
TRADI: Tracking deep neural network weight distributions for uncertainty estimation
Gianni Franchi
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
Isabelle Bloch
UQCV
12
51
0
24 Dec 2019
Bayesian Graph Convolutional Neural Networks using Node Copying
Bayesian Graph Convolutional Neural Networks using Node Copying
Soumyasundar Pal
Florence Regol
Mark J. Coates
BDL
GNN
14
12
0
08 Nov 2019
Thompson Sampling via Local Uncertainty
Thompson Sampling via Local Uncertainty
Zhendong Wang
Mingyuan Zhou
6
18
0
30 Oct 2019
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity
  as a Surrogate
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity as a Surrogate
Lu Mi
Hao Wang
Yonglong Tian
Hao He
Nir Shavit
UQCV
21
29
0
28 Sep 2019
Marginally-calibrated deep distributional regression
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
22
14
0
26 Aug 2019
Sampling-free Epistemic Uncertainty Estimation Using Approximated
  Variance Propagation
Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation
Janis Postels
Francesco Ferroni
Huseyin Coskun
Nassir Navab
Federico Tombari
UQCV
UD
PER
BDL
19
139
0
01 Aug 2019
A General Framework for Uncertainty Estimation in Deep Learning
A General Framework for Uncertainty Estimation in Deep Learning
Antonio Loquercio
Mattia Segu
Davide Scaramuzza
UQCV
BDL
OOD
26
287
0
16 Jul 2019
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale
  Bayesian Deep Learning
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning
Sebastian Farquhar
Michael A. Osborne
Y. Gal
UQCV
BDL
11
57
0
01 Jul 2019
Deep Active Learning with Adaptive Acquisition
Deep Active Learning with Adaptive Acquisition
Manuel Haussmann
Fred Hamprecht
M. Kandemir
14
41
0
27 Jun 2019
Efficient Evaluation-Time Uncertainty Estimation by Improved
  Distillation
Efficient Evaluation-Time Uncertainty Estimation by Improved Distillation
Erik Englesson
Hossein Azizpour
UQCV
4
7
0
12 Jun 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
11
8
0
10 Jun 2019
Uncertainty-guided Continual Learning with Bayesian Neural Networks
Uncertainty-guided Continual Learning with Bayesian Neural Networks
Sayna Ebrahimi
Mohamed Elhoseiny
Trevor Darrell
Marcus Rohrbach
CLL
BDL
6
195
0
06 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
J. Gardner
UQCV
BDL
17
3
0
31 May 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
11
14
0
27 May 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian
  Neural Network
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDL
UQCV
21
8
0
23 May 2019
Expressive Priors in Bayesian Neural Networks: Kernel Combinations and
  Periodic Functions
Expressive Priors in Bayesian Neural Networks: Kernel Combinations and Periodic Functions
Tim Pearce
Russell Tsuchida
Mohamed H. Zaki
Alexandra Brintrup
A. Neely
BDL
14
48
0
15 May 2019
Can You Trust This Prediction? Auditing Pointwise Reliability After
  Learning
Can You Trust This Prediction? Auditing Pointwise Reliability After Learning
Peter F. Schulam
S. Saria
OOD
11
103
0
02 Jan 2019
Building robust classifiers through generation of confident out of
  distribution examples
Building robust classifiers through generation of confident out of distribution examples
K. Sricharan
Ashok Srivastava
OOD
6
31
0
01 Dec 2018
Bayesian graph convolutional neural networks for semi-supervised
  classification
Bayesian graph convolutional neural networks for semi-supervised classification
Yingxue Zhang
Soumyasundar Pal
Mark J. Coates
Deniz Üstebay
GNN
BDL
19
227
0
27 Nov 2018
Scalable agent alignment via reward modeling: a research direction
Scalable agent alignment via reward modeling: a research direction
Jan Leike
David M. Krueger
Tom Everitt
Miljan Martic
Vishal Maini
Shane Legg
14
392
0
19 Nov 2018
Deterministic Variational Inference for Robust Bayesian Neural Networks
Deterministic Variational Inference for Robust Bayesian Neural Networks
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard E. Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
UQCV
AAML
BDL
29
16
0
09 Oct 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
8
46
0
05 Sep 2018
Policy Optimization as Wasserstein Gradient Flows
Policy Optimization as Wasserstein Gradient Flows
Ruiyi Zhang
Changyou Chen
Chunyuan Li
Lawrence Carin
9
66
0
09 Aug 2018
Inference in Deep Gaussian Processes using Stochastic Gradient
  Hamiltonian Monte Carlo
Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo
Marton Havasi
José Miguel Hernández-Lobato
J. J. Murillo-Fuentes
BDL
11
96
0
14 Jun 2018
Structured Variational Learning of Bayesian Neural Networks with
  Horseshoe Priors
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors
S. Ghosh
Jiayu Yao
Finale Doshi-Velez
BDL
UQCV
11
77
0
13 Jun 2018
Meta-Learning for Stochastic Gradient MCMC
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
14
44
0
12 Jun 2018
Differentiable Compositional Kernel Learning for Gaussian Processes
Differentiable Compositional Kernel Learning for Gaussian Processes
Shengyang Sun
Guodong Zhang
Chaoqi Wang
Wenyuan Zeng
Jiaman Li
Roger C. Grosse
BDL
11
69
0
12 Jun 2018
Variational Implicit Processes
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
15
68
0
06 Jun 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
11
86
0
29 May 2018
Lightweight Probabilistic Deep Networks
Lightweight Probabilistic Deep Networks
Jochen Gast
Stefan Roth
UQCV
OOD
BDL
17
180
0
29 May 2018
Improving GAN Training via Binarized Representation Entropy (BRE)
  Regularization
Improving GAN Training via Binarized Representation Entropy (BRE) Regularization
Yanshuai Cao
G. Ding
Kry Yik-Chau Lui
Ruitong Huang
GAN
8
19
0
09 May 2018
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep
  Networks for Thompson Sampling
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
C. Riquelme
George Tucker
Jasper Snoek
BDL
22
366
0
26 Feb 2018
Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
Mattias Teye
Hossein Azizpour
Kevin Smith
BDL
UQCV
15
239
0
18 Feb 2018
Deep Neural Networks Learn Non-Smooth Functions Effectively
Deep Neural Networks Learn Non-Smooth Functions Effectively
Masaaki Imaizumi
Kenji Fukumizu
13
123
0
13 Feb 2018
Bayesian Semisupervised Learning with Deep Generative Models
Bayesian Semisupervised Learning with Deep Generative Models
Jonathan Gordon
José Miguel Hernández-Lobato
BDL
UQCV
GAN
17
27
0
29 Jun 2017
Previous
123
Next