ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.02222
  4. Cited By
Deep Kernel Learning

Deep Kernel Learning

6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric P. Xing
    BDL
ArXivPDFHTML

Papers citing "Deep Kernel Learning"

50 / 138 papers shown
Title
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Hechuan Wen
Tong Chen
Mingming Gong
Li Kheng Chai
S. Sadiq
Hongzhi Yin
CML
58
0
0
08 May 2025
Conditional Diffusion-Based Retrieval of Atmospheric CO2 from Earth Observing Spectroscopy
Conditional Diffusion-Based Retrieval of Atmospheric CO2 from Earth Observing Spectroscopy
William R. Keely
Otto Lamminpää
Steffen Mauceri
Sean M. R. Crowell
Christopher W. O'Dell
Gregory R. McGarragh
50
0
0
23 Apr 2025
Latent Bayesian Optimization via Autoregressive Normalizing Flows
Latent Bayesian Optimization via Autoregressive Normalizing Flows
Seunghun Lee
Jinyoung Park
Jaewon Chu
Minseo Yoon
H. Kim
BDL
30
1
0
21 Apr 2025
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
Bojana Ranković
P. Schwaller
BDL
155
0
0
08 Apr 2025
Image Classification with Deep Reinforcement Active Learning
Image Classification with Deep Reinforcement Active Learning
Mingyuan Jiu
Xuguang Song
H. Sahbi
Shupan Li
Yan Chen
Wei Guo
Lihua Guo
Mingliang Xu
VLM
24
0
0
31 Dec 2024
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
M. Risser
M. Noack
Hengrui Luo
Ronald Pandolfi
GP
33
0
0
07 Nov 2024
MF-LAL: Drug Compound Generation Using Multi-Fidelity Latent Space Active Learning
MF-LAL: Drug Compound Generation Using Multi-Fidelity Latent Space Active Learning
Peter Eckmann
D. Wu
G. Heinzelmann
Michael K. Gilson
Rose Yu
AI4CE
40
0
0
15 Oct 2024
Federated Neural Nonparametric Point Processes
Federated Neural Nonparametric Point Processes
Hui Chen
Hengyu Liu
Hengyu Liu
Xuhui Fan
Zhilin Zhao
Feng Zhou
Christopher J. Quinn
Longbing Cao
FedML
38
0
0
08 Oct 2024
Lightning UQ Box: A Comprehensive Framework for Uncertainty
  Quantification in Deep Learning
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
40
0
0
04 Oct 2024
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Jorge Loría
A. Bhadra
BDL
UQCV
61
0
0
02 Oct 2024
Learning Deep Kernels for Non-Parametric Independence Testing
Learning Deep Kernels for Non-Parametric Independence Testing
Nathaniel Xu
Feng Liu
Danica J. Sutherland
BDL
31
0
0
10 Sep 2024
Bayesian meta learning for trustworthy uncertainty quantification
Bayesian meta learning for trustworthy uncertainty quantification
Zhenyuan Yuan
Thinh T. Doan
UQCV
25
0
0
27 Jul 2024
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
50
3
0
05 Jun 2024
Recurrent Deep Kernel Learning of Dynamical Systems
Recurrent Deep Kernel Learning of Dynamical Systems
N. Botteghi
Paolo Motta
Andrea Manzoni
P. Zunino
Mengwu Guo
18
1
0
30 May 2024
Infinite-Dimensional Feature Interaction
Infinite-Dimensional Feature Interaction
Chenhui Xu
Fuxun Yu
Maoliang Li
Zihao Zheng
Zirui Xu
Jinjun Xiong
Xiang Chen
34
1
0
22 May 2024
Spectral complexity of deep neural networks
Spectral complexity of deep neural networks
Simmaco Di Lillo
Domenico Marinucci
Michele Salvi
S. Vigogna
BDL
74
1
0
15 May 2024
Kernel PCA for Out-of-Distribution Detection
Kernel PCA for Out-of-Distribution Detection
Kun Fang
Qinghua Tao
Kexin Lv
M. He
Xiaolin Huang
Jie-jin Yang
OODD
46
2
0
05 Feb 2024
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Mahrokh Ghoddousi Boroujeni
Andreas Krause
Giancarlo Ferrari-Trecate
FedML
32
3
0
16 Jan 2024
Hybrid Modeling Design Patterns
Hybrid Modeling Design Patterns
Maja Rudolph
Stefan Kurz
Barbara Rakitsch
AI4CE
26
8
0
29 Dec 2023
Clairvoyance: A Pipeline Toolkit for Medical Time Series
Clairvoyance: A Pipeline Toolkit for Medical Time Series
Daniel Jarrett
Jinsung Yoon
Ioana Bica
Zhaozhi Qian
A. Ercole
M. Schaar
AI4TS
21
35
0
28 Oct 2023
Parallel and Limited Data Voice Conversion Using Stochastic Variational
  Deep Kernel Learning
Parallel and Limited Data Voice Conversion Using Stochastic Variational Deep Kernel Learning
Mohamadreza Jafaryani
H. Sheikhzadeh
V. Pourahmadi
14
4
0
08 Sep 2023
Learning Regions of Interest for Bayesian Optimization with Adaptive
  Level-Set Estimation
Learning Regions of Interest for Bayesian Optimization with Adaptive Level-Set Estimation
Fengxue Zhang
Jialin Song
James Bowden
Alexander Ladd
Yisong Yue
Thomas A. Desautels
Yuxin Chen
25
6
0
25 Jul 2023
FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
  Emulation
FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation
S. Bouabid
Dino Sejdinovic
D. Watson‐Parris
9
5
0
14 Jul 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDL
UQCV
58
1
0
26 May 2023
The Representation Jensen-Shannon Divergence
The Representation Jensen-Shannon Divergence
J. Hoyos-Osorio
Santiago Posso-Murillo
L. S. Giraldo
40
6
0
25 May 2023
Inverse Protein Folding Using Deep Bayesian Optimization
Inverse Protein Folding Using Deep Bayesian Optimization
N. Maus
Yimeng Zeng
Daniel A. Anderson
Phillip M. Maffettone
Aaron C. Solomon
Peyton Greenside
Osbert Bastani
Jacob R. Gardner
15
2
0
25 May 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
24
17
0
08 May 2023
Gaussian process deconvolution
Gaussian process deconvolution
Felipe A. Tobar
Arnaud Robert
Jorge F. Silva
17
5
0
08 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
27
75
0
07 May 2023
Experience-Based Evolutionary Algorithms for Expensive Optimization
Experience-Based Evolutionary Algorithms for Expensive Optimization
Xunzhao Yu
Yan Wang
Ling Zhu
Dimitar Filev
Xin Yao
9
2
0
09 Apr 2023
Self-Distillation for Gaussian Process Regression and Classification
Self-Distillation for Gaussian Process Regression and Classification
Kenneth Borup
L. Andersen
11
2
0
05 Apr 2023
A dynamic Bayesian optimized active recommender system for
  curiosity-driven Human-in-the-loop automated experiments
A dynamic Bayesian optimized active recommender system for curiosity-driven Human-in-the-loop automated experiments
Arpan Biswas
Yongtao Liu
Nicole Creange
Yu-Chen Liu
S. Jesse
Jan-Chi Yang
Sergei V. Kalinin
M. Ziatdinov
Rama K Vasudevan
16
5
0
05 Apr 2023
Deep Ranking Ensembles for Hyperparameter Optimization
Deep Ranking Ensembles for Hyperparameter Optimization
Abdus Salam Khazi
Sebastian Pineda Arango
Josif Grabocka
BDL
31
7
0
27 Mar 2023
Transfer Learning for Bayesian Optimization: A Survey
Transfer Learning for Bayesian Optimization: A Survey
Tianyi Bai
Yang Li
Yu Shen
Xinyi Zhang
Wentao Zhang
Bin Cui
BDL
34
29
0
12 Feb 2023
Multi-view Kernel PCA for Time series Forecasting
Multi-view Kernel PCA for Time series Forecasting
Arun Pandey
Hannes De Meulemeester
B. De Moor
Johan A. K. Suykens
AI4TS
20
5
0
24 Jan 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space
  Model
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
26
7
0
21 Jan 2023
Faithful Heteroscedastic Regression with Neural Networks
Faithful Heteroscedastic Regression with Neural Networks
Andrew Stirn
H. Wessels
Megan D. Schertzer
L. Pereira
Neville E. Sanjana
David A. Knowles
UQCV
17
14
0
18 Dec 2022
Deep Kernel Learning for Mortality Prediction in the Face of Temporal
  Shift
Deep Kernel Learning for Mortality Prediction in the Face of Temporal Shift
Miguel Rios
A. Abu-Hanna
OOD
14
1
0
01 Dec 2022
Synthetic data enable experiments in atomistic machine learning
Synthetic data enable experiments in atomistic machine learning
John L A Gardner
Z. Beaulieu
Volker L. Deringer
29
6
0
29 Nov 2022
Counterfactual Learning with Multioutput Deep Kernels
Counterfactual Learning with Multioutput Deep Kernels
A. Caron
G. Baio
I. Manolopoulou
BDL
CML
OffRL
15
1
0
20 Nov 2022
Introduction and Exemplars of Uncertainty Decomposition
Introduction and Exemplars of Uncertainty Decomposition
Shuo Chen
UD
UQCV
PER
30
0
0
17 Nov 2022
MMD-B-Fair: Learning Fair Representations with Statistical Testing
MMD-B-Fair: Learning Fair Representations with Statistical Testing
Namrata Deka
Danica J. Sutherland
15
6
0
15 Nov 2022
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
  From Theory to Practice
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice
Jonas Rothfuss
Martin Josifoski
Vincent Fortuin
Andreas Krause
35
7
0
14 Nov 2022
Uncertainty Quantification for Atlas-Level Cell Type Transfer
Uncertainty Quantification for Atlas-Level Cell Type Transfer
J. Engelmann
Leon Hetzel
Giovanni Palla
L. Sikkema
Malte D. Luecken
Fabian J. Theis
19
3
0
07 Nov 2022
Optimizing Closed-Loop Performance with Data from Similar Systems: A
  Bayesian Meta-Learning Approach
Optimizing Closed-Loop Performance with Data from Similar Systems: A Bayesian Meta-Learning Approach
Ankush Chakrabarty
17
9
0
31 Oct 2022
Compositional Law Parsing with Latent Random Functions
Compositional Law Parsing with Latent Random Functions
Fan Shi
Bin Li
Xiangyang Xue
CoGe
19
4
0
15 Sep 2022
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard E. Turner
L. Yao
BDL
73
24
0
01 Sep 2022
Fast emulation of density functional theory simulations using
  approximate Gaussian processes
Fast emulation of density functional theory simulations using approximate Gaussian processes
S. Stetzler
M. Grosskopf
E. Lawrence
13
0
0
24 Aug 2022
Doubly Deformable Aggregation of Covariance Matrices for Few-shot
  Segmentation
Doubly Deformable Aggregation of Covariance Matrices for Few-shot Segmentation
Zhitong Xiong
Haopeng Li
Xiao Xiang Zhu
35
35
0
30 Jul 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
21
0
0
27 Jun 2022
123
Next