Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.02222
Cited By
Deep Kernel Learning
6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric P. Xing
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Kernel Learning"
50 / 138 papers shown
Title
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Hechuan Wen
Tong Chen
Mingming Gong
Li Kheng Chai
S. Sadiq
Hongzhi Yin
CML
58
0
0
08 May 2025
Conditional Diffusion-Based Retrieval of Atmospheric CO2 from Earth Observing Spectroscopy
William R. Keely
Otto Lamminpää
Steffen Mauceri
Sean M. R. Crowell
Christopher W. O'Dell
Gregory R. McGarragh
50
0
0
23 Apr 2025
Latent Bayesian Optimization via Autoregressive Normalizing Flows
Seunghun Lee
Jinyoung Park
Jaewon Chu
Minseo Yoon
H. Kim
BDL
30
1
0
21 Apr 2025
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
Bojana Ranković
P. Schwaller
BDL
155
0
0
08 Apr 2025
Image Classification with Deep Reinforcement Active Learning
Mingyuan Jiu
Xuguang Song
H. Sahbi
Shupan Li
Yan Chen
Wei Guo
Lihua Guo
Mingliang Xu
VLM
24
0
0
31 Dec 2024
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
M. Risser
M. Noack
Hengrui Luo
Ronald Pandolfi
GP
33
0
0
07 Nov 2024
MF-LAL: Drug Compound Generation Using Multi-Fidelity Latent Space Active Learning
Peter Eckmann
D. Wu
G. Heinzelmann
Michael K. Gilson
Rose Yu
AI4CE
40
0
0
15 Oct 2024
Federated Neural Nonparametric Point Processes
Hui Chen
Hengyu Liu
Hengyu Liu
Xuhui Fan
Zhilin Zhao
Feng Zhou
Christopher J. Quinn
Longbing Cao
FedML
38
0
0
08 Oct 2024
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
40
0
0
04 Oct 2024
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Jorge Loría
A. Bhadra
BDL
UQCV
61
0
0
02 Oct 2024
Learning Deep Kernels for Non-Parametric Independence Testing
Nathaniel Xu
Feng Liu
Danica J. Sutherland
BDL
31
0
0
10 Sep 2024
Bayesian meta learning for trustworthy uncertainty quantification
Zhenyuan Yuan
Thinh T. Doan
UQCV
25
0
0
27 Jul 2024
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
50
3
0
05 Jun 2024
Recurrent Deep Kernel Learning of Dynamical Systems
N. Botteghi
Paolo Motta
Andrea Manzoni
P. Zunino
Mengwu Guo
18
1
0
30 May 2024
Infinite-Dimensional Feature Interaction
Chenhui Xu
Fuxun Yu
Maoliang Li
Zihao Zheng
Zirui Xu
Jinjun Xiong
Xiang Chen
34
1
0
22 May 2024
Spectral complexity of deep neural networks
Simmaco Di Lillo
Domenico Marinucci
Michele Salvi
S. Vigogna
BDL
74
1
0
15 May 2024
Kernel PCA for Out-of-Distribution Detection
Kun Fang
Qinghua Tao
Kexin Lv
M. He
Xiaolin Huang
Jie-jin Yang
OODD
46
2
0
05 Feb 2024
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Mahrokh Ghoddousi Boroujeni
Andreas Krause
Giancarlo Ferrari-Trecate
FedML
32
3
0
16 Jan 2024
Hybrid Modeling Design Patterns
Maja Rudolph
Stefan Kurz
Barbara Rakitsch
AI4CE
26
8
0
29 Dec 2023
Clairvoyance: A Pipeline Toolkit for Medical Time Series
Daniel Jarrett
Jinsung Yoon
Ioana Bica
Zhaozhi Qian
A. Ercole
M. Schaar
AI4TS
21
35
0
28 Oct 2023
Parallel and Limited Data Voice Conversion Using Stochastic Variational Deep Kernel Learning
Mohamadreza Jafaryani
H. Sheikhzadeh
V. Pourahmadi
14
4
0
08 Sep 2023
Learning Regions of Interest for Bayesian Optimization with Adaptive Level-Set Estimation
Fengxue Zhang
Jialin Song
James Bowden
Alexander Ladd
Yisong Yue
Thomas A. Desautels
Yuxin Chen
25
6
0
25 Jul 2023
FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation
S. Bouabid
Dino Sejdinovic
D. Watson‐Parris
9
5
0
14 Jul 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDL
UQCV
58
1
0
26 May 2023
The Representation Jensen-Shannon Divergence
J. Hoyos-Osorio
Santiago Posso-Murillo
L. S. Giraldo
40
6
0
25 May 2023
Inverse Protein Folding Using Deep Bayesian Optimization
N. Maus
Yimeng Zeng
Daniel A. Anderson
Phillip M. Maffettone
Aaron C. Solomon
Peyton Greenside
Osbert Bastani
Jacob R. Gardner
15
2
0
25 May 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
24
17
0
08 May 2023
Gaussian process deconvolution
Felipe A. Tobar
Arnaud Robert
Jorge F. Silva
17
5
0
08 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
27
75
0
07 May 2023
Experience-Based Evolutionary Algorithms for Expensive Optimization
Xunzhao Yu
Yan Wang
Ling Zhu
Dimitar Filev
Xin Yao
9
2
0
09 Apr 2023
Self-Distillation for Gaussian Process Regression and Classification
Kenneth Borup
L. Andersen
11
2
0
05 Apr 2023
A dynamic Bayesian optimized active recommender system for curiosity-driven Human-in-the-loop automated experiments
Arpan Biswas
Yongtao Liu
Nicole Creange
Yu-Chen Liu
S. Jesse
Jan-Chi Yang
Sergei V. Kalinin
M. Ziatdinov
Rama K Vasudevan
16
5
0
05 Apr 2023
Deep Ranking Ensembles for Hyperparameter Optimization
Abdus Salam Khazi
Sebastian Pineda Arango
Josif Grabocka
BDL
31
7
0
27 Mar 2023
Transfer Learning for Bayesian Optimization: A Survey
Tianyi Bai
Yang Li
Yu Shen
Xinyi Zhang
Wentao Zhang
Bin Cui
BDL
34
29
0
12 Feb 2023
Multi-view Kernel PCA for Time series Forecasting
Arun Pandey
Hannes De Meulemeester
B. De Moor
Johan A. K. Suykens
AI4TS
20
5
0
24 Jan 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
26
7
0
21 Jan 2023
Faithful Heteroscedastic Regression with Neural Networks
Andrew Stirn
H. Wessels
Megan D. Schertzer
L. Pereira
Neville E. Sanjana
David A. Knowles
UQCV
17
14
0
18 Dec 2022
Deep Kernel Learning for Mortality Prediction in the Face of Temporal Shift
Miguel Rios
A. Abu-Hanna
OOD
14
1
0
01 Dec 2022
Synthetic data enable experiments in atomistic machine learning
John L A Gardner
Z. Beaulieu
Volker L. Deringer
29
6
0
29 Nov 2022
Counterfactual Learning with Multioutput Deep Kernels
A. Caron
G. Baio
I. Manolopoulou
BDL
CML
OffRL
15
1
0
20 Nov 2022
Introduction and Exemplars of Uncertainty Decomposition
Shuo Chen
UD
UQCV
PER
30
0
0
17 Nov 2022
MMD-B-Fair: Learning Fair Representations with Statistical Testing
Namrata Deka
Danica J. Sutherland
15
6
0
15 Nov 2022
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice
Jonas Rothfuss
Martin Josifoski
Vincent Fortuin
Andreas Krause
35
7
0
14 Nov 2022
Uncertainty Quantification for Atlas-Level Cell Type Transfer
J. Engelmann
Leon Hetzel
Giovanni Palla
L. Sikkema
Malte D. Luecken
Fabian J. Theis
19
3
0
07 Nov 2022
Optimizing Closed-Loop Performance with Data from Similar Systems: A Bayesian Meta-Learning Approach
Ankush Chakrabarty
17
9
0
31 Oct 2022
Compositional Law Parsing with Latent Random Functions
Fan Shi
Bin Li
Xiangyang Xue
CoGe
19
4
0
15 Sep 2022
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard E. Turner
L. Yao
BDL
73
24
0
01 Sep 2022
Fast emulation of density functional theory simulations using approximate Gaussian processes
S. Stetzler
M. Grosskopf
E. Lawrence
13
0
0
24 Aug 2022
Doubly Deformable Aggregation of Covariance Matrices for Few-shot Segmentation
Zhitong Xiong
Haopeng Li
Xiao Xiang Zhu
35
35
0
30 Jul 2022
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
21
0
0
27 Jun 2022
1
2
3
Next