Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.02222
Cited By
Deep Kernel Learning
6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric P. Xing
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Kernel Learning"
50 / 141 papers shown
Title
Integrating Random Effects in Deep Neural Networks
Giora Simchoni
Saharon Rosset
BDL
AI4CE
14
21
0
07 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
17
6
0
30 May 2022
Split personalities in Bayesian Neural Networks: the case for full marginalisation
David Yallup
Will Handley
Michael P. Hobson
A. Lasenby
Pablo Lemos
22
1
0
23 May 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
24
3
0
22 May 2022
The Unreasonable Effectiveness of Deep Evidential Regression
N. Meinert
J. Gawlikowski
Alexander Lavin
UQCV
EDL
175
35
0
20 May 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
30
4
0
15 May 2022
Efficient Learning of Inverse Dynamics Models for Adaptive Computed Torque Control
David Jorge
Gabriella Pizzuto
M. Mistry
11
3
0
10 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
16
48
0
01 May 2022
NeuralEF: Deconstructing Kernels by Deep Neural Networks
Zhijie Deng
Jiaxin Shi
Jun Zhu
16
18
0
30 Apr 2022
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
Samuel Stanton
Wesley J. Maddox
Nate Gruver
Phillip M. Maffettone
E. Delaney
Peyton Greenside
A. Wilson
BDL
31
89
0
23 Mar 2022
E-LMC: Extended Linear Model of Coregionalization for Spatial Field Prediction
Shihong Wang
Xueying Zhang
Yichen Meng
W. Xing
15
1
0
01 Mar 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
31
44
0
22 Feb 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
21
3
0
30 Jan 2022
Local Latent Space Bayesian Optimization over Structured Inputs
N. Maus
Haydn Jones
Juston Moore
Matt J. Kusner
John Bradshaw
J. Gardner
BDL
49
69
0
28 Jan 2022
A Kernel-Expanded Stochastic Neural Network
Y. Sun
F. Liang
20
5
0
14 Jan 2022
Neural Fields as Learnable Kernels for 3D Reconstruction
Francis Williams
Zan Gojcic
S. Khamis
Denis Zorin
Joan Bruna
Sanja Fidler
Or Litany
44
66
0
26 Nov 2021
Multi-Task Neural Processes
Jiayi Shen
Xiantong Zhen
M. Worring
Ling Shao
BDL
16
8
0
10 Nov 2021
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes
Hugh Dance
Brooks Paige
GP
20
10
0
08 Nov 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
11
2
0
30 Oct 2021
Improving Hyperparameter Optimization by Planning Ahead
H. Jomaa
Jonas K. Falkner
Lars Schmidt-Thieme
16
0
0
15 Oct 2021
Analysis of the first Genetic Engineering Attribution Challenge
O. Crook
K. L. Warmbrod
G. Lipstein
Christine Chung
Christopher W. Bakerlee
...
Shelly R. Holland
Jacob Swett
K. Esvelt
E. C. Alley
W. Bradshaw
16
9
0
14 Oct 2021
Dense Gaussian Processes for Few-Shot Segmentation
Joakim Johnander
Johan Edstedt
M. Felsberg
F. Khan
Martin Danelljan
59
30
0
07 Oct 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
31
11
0
06 Oct 2021
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes
Jongseo Lee
Jianxiang Feng
Matthias Humt
M. Müller
Rudolph Triebel
UQCV
46
21
0
20 Sep 2021
BoA-PTA, A Bayesian Optimization Accelerated Error-Free SPICE Solver
W. Xing
X. Jin
Yi Liu
Dan Niu
Weisheng Zhao
Zhou Jin
11
4
0
31 Jul 2021
Stein Variational Gradient Descent with Multiple Kernel
Qingzhong Ai
Shiyu Liu
Lirong He
Zenglin Xu
17
4
0
20 Jul 2021
Meta-learning Amidst Heterogeneity and Ambiguity
Kyeongryeol Go
Seyoung Yun
24
1
0
05 Jul 2021
Personalized Federated Learning with Gaussian Processes
Idan Achituve
Aviv Shamsian
Aviv Navon
Gal Chechik
Ethan Fetaya
FedML
21
98
0
29 Jun 2021
Meta-Learning Reliable Priors in the Function Space
Jonas Rothfuss
Dominique Heyn
Jinfan Chen
Andreas Krause
26
27
0
06 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
63
17
0
23 Apr 2021
Multivariate Deep Evidential Regression
N. Meinert
Alexander Lavin
BDL
PER
EDL
UQCV
17
21
0
13 Apr 2021
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive Survey
Kai Chen
Qinglei Kong
Yijue Dai
Yue Xu
Feng Yin
Lexi Xu
Shuguang Cui
23
30
0
18 Mar 2021
SCRIB: Set-classifier with Class-specific Risk Bounds for Blackbox Models
Zhen Lin
Cao Xiao
Lucas Glass
M. P. M. Brandon Westover
Jimeng Sun
BDL
21
11
0
05 Mar 2021
Fast Adaptation with Linearized Neural Networks
Wesley J. Maddox
Shuai Tang
Pablo G. Moreno
A. Wilson
Andreas C. Damianou
19
32
0
02 Mar 2021
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
202
81
0
16 Feb 2021
Few-Shot Bayesian Optimization with Deep Kernel Surrogates
Martin Wistuba
Josif Grabocka
BDL
29
68
0
19 Jan 2021
Transferring model structure in Bayesian transfer learning for Gaussian process regression
Milan Papez
A. Quinn
19
11
0
18 Jan 2021
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
25
18
0
25 Nov 2020
Are wider nets better given the same number of parameters?
A. Golubeva
Behnam Neyshabur
Guy Gur-Ari
16
44
0
27 Oct 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
6
25
0
22 Oct 2020
Few-shot Learning for Spatial Regression
Tomoharu Iwata
Yusuke Tanaka
9
11
0
09 Oct 2020
Deep State-Space Gaussian Processes
Zheng Zhao
M. Emzir
Simo Särkkä
GP
32
19
0
11 Aug 2020
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake C. Snell
R. Zemel
33
63
0
20 Jul 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDL
UQCV
25
4
0
21 Jun 2020
NP-PROV: Neural Processes with Position-Relevant-Only Variances
Xuesong Wang
Lina Yao
Xianzhi Wang
Feiping Nie
BDL
17
3
0
15 Jun 2020
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation
Yifan Chen
H. Owhadi
Andrew M. Stuart
17
31
0
22 May 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
31
277
0
24 Feb 2020
Previous
1
2
3
Next