ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.02222
  4. Cited By
Deep Kernel Learning

Deep Kernel Learning

6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric P. Xing
    BDL
ArXivPDFHTML

Papers citing "Deep Kernel Learning"

41 / 141 papers shown
Title
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu
Wenkai Xu
Jie Lu
Guangquan Zhang
A. Gretton
Danica J. Sutherland
16
176
0
21 Feb 2020
Deep regularization and direct training of the inner layers of Neural
  Networks with Kernel Flows
Deep regularization and direct training of the inner layers of Neural Networks with Kernel Flows
G. Yoo
H. Owhadi
22
21
0
19 Feb 2020
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
22
58
0
19 Feb 2020
Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
  Process: A New Insight into Machine Learning Applications
Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian Process: A New Insight into Machine Learning Applications
Yun Yuan
X. Yang
Zhao Zhang
Shandian Zhe
AI4CE
18
94
0
06 Feb 2020
Approximate Inference for Fully Bayesian Gaussian Process Regression
Approximate Inference for Fully Bayesian Gaussian Process Regression
V. Lalchand
C. Rasmussen
GP
17
51
0
31 Dec 2019
Randomly Projected Additive Gaussian Processes for Regression
Randomly Projected Additive Gaussian Processes for Regression
Ian A. Delbridge
D. Bindel
A. Wilson
11
27
0
30 Dec 2019
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any
  Architecture are Gaussian Processes
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
33
189
0
28 Oct 2019
Neural Spectrum Alignment: Empirical Study
Neural Spectrum Alignment: Empirical Study
Dmitry Kopitkov
Vadim Indelman
16
14
0
19 Oct 2019
Recurrent Attentive Neural Process for Sequential Data
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDL
AI4TS
16
38
0
17 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
19
93
0
14 Oct 2019
On the expected behaviour of noise regularised deep neural networks as
  Gaussian processes
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
16
9
0
12 Oct 2019
Kernel-Based Approaches for Sequence Modeling: Connections to Neural
  Methods
Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods
Kevin J Liang
Guoyin Wang
Yitong Li
Ricardo Henao
Lawrence Carin
18
2
0
09 Oct 2019
Deep Kernel Learning for Clustering
Deep Kernel Learning for Clustering
Chieh-Tsai Wu
Zulqarnain Khan
Yale Chang
Stratis Ioannidis
Jennifer Dy
90
13
0
09 Aug 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
24
141
0
17 Jul 2019
GP-VAE: Deep Probabilistic Time Series Imputation
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDL
AI4TS
17
245
0
09 Jul 2019
Learning GPLVM with arbitrary kernels using the unscented transformation
Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel Augusto R. M. A. de Souza
Diego Mesquita
C. L. C. Mattos
Joao P. P. Gomes
13
0
0
03 Jul 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
21
77
0
19 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
J. Gardner
UQCV
BDL
27
3
0
31 May 2019
Adaptive Deep Kernel Learning
Adaptive Deep Kernel Learning
Prudencio Tossou
Basile Dura
François Laviolette
M. Marchand
Alexandre Lacoste
19
29
0
28 May 2019
On Exact Computation with an Infinitely Wide Neural Net
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
24
899
0
26 Apr 2019
Attentive Neural Processes
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
21
429
0
17 Jan 2019
Extending classical surrogate modelling to high-dimensions through
  supervised dimensionality reduction: a data-driven approach
Extending classical surrogate modelling to high-dimensions through supervised dimensionality reduction: a data-driven approach
C. Lataniotis
S. Marelli
Bruno Sudret
15
66
0
15 Dec 2018
Neural Non-Stationary Spectral Kernel
Neural Non-Stationary Spectral Kernel
Sami Remes
Markus Heinonen
Samuel Kaski
BDL
14
9
0
27 Nov 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian
  Processes
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
16
306
0
11 Oct 2018
Kernel Flows: from learning kernels from data into the abyss
Kernel Flows: from learning kernels from data into the abyss
H. Owhadi
G. Yoo
13
88
0
13 Aug 2018
Stagewise Safe Bayesian Optimization with Gaussian Processes
Stagewise Safe Bayesian Optimization with Gaussian Processes
Yanan Sui
Vincent Zhuang
J. W. Burdick
Yisong Yue
13
139
0
20 Jun 2018
Differentiable Compositional Kernel Learning for Gaussian Processes
Differentiable Compositional Kernel Learning for Gaussian Processes
Shengyang Sun
Guodong Zhang
Chaoqi Wang
Wenyuan Zeng
Jiaman Li
Roger C. Grosse
BDL
13
69
0
12 Jun 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
39
951
0
05 Jun 2018
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian
  Process Regression
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
14
83
0
03 Jun 2018
Deep Embedding Kernel
Deep Embedding Kernel
Linh Le
Ying Xie
19
10
0
16 Apr 2018
Constant-Time Predictive Distributions for Gaussian Processes
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
J. Gardner
Kilian Q. Weinberger
A. Wilson
17
94
0
16 Mar 2018
Deep Expander Networks: Efficient Deep Networks from Graph Theory
Deep Expander Networks: Efficient Deep Networks from Graph Theory
Ameya Prabhu
G. Varma
A. Namboodiri
GNN
30
70
0
23 Nov 2017
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
19
1,068
0
01 Nov 2017
Auto-Differentiating Linear Algebra
Auto-Differentiating Linear Algebra
Matthias Seeger
A. Hetzel
Zhenwen Dai
Eric Meissner
Neil D. Lawrence
17
38
0
24 Oct 2017
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor
  Train Decomposition
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition
Pavel Izmailov
Alexander Novikov
D. Kropotov
15
61
0
19 Oct 2017
Contextual Explanation Networks
Contextual Explanation Networks
Maruan Al-Shedivat
Kumar Avinava Dubey
Eric P. Xing
CML
24
82
0
29 May 2017
Deep Radial Kernel Networks: Approximating Radially Symmetric Functions
  with Deep Networks
Deep Radial Kernel Networks: Approximating Radially Symmetric Functions with Deep Networks
B. McCane
Lech Szymanski
31
6
0
09 Mar 2017
Deep Kernelized Autoencoders
Deep Kernelized Autoencoders
Michael C. Kampffmeyer
Sigurd Løkse
F. Bianchi
Robert Jenssen
L. Livi
13
18
0
08 Feb 2017
Learning Scalable Deep Kernels with Recurrent Structure
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric P. Xing
BDL
9
104
0
27 Oct 2016
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process
  Models
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models
K. Krauth
Edwin V. Bonilla
Kurt Cutajar
Maurizio Filippone
GP
BDL
9
54
0
18 Oct 2016
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
86
271
0
24 Feb 2014
Previous
123