ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.03661
  4. Cited By
Learning Representations for Counterfactual Inference
v1v2v3 (latest)

Learning Representations for Counterfactual Inference

12 May 2016
Fredrik D. Johansson
Uri Shalit
David Sontag
    CMLOODBDL
ArXiv (abs)PDFHTML

Papers citing "Learning Representations for Counterfactual Inference"

50 / 403 papers shown
Title
Data-Driven Offline Decision-Making via Invariant Representation
  Learning
Data-Driven Offline Decision-Making via Invariant Representation Learning
Qi
Yi-Hsun Su
Aviral Kumar
Sergey Levine
OffRL
91
22
0
21 Nov 2022
Counterfactual Learning with Multioutput Deep Kernels
Counterfactual Learning with Multioutput Deep Kernels
A. Caron
G. Baio
I. Manolopoulou
BDLCMLOffRL
72
1
0
20 Nov 2022
Confounder Balancing for Instrumental Variable Regression with Latent
  Variable
Confounder Balancing for Instrumental Variable Regression with Latent Variable
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Bo Li
Leilei Gan
CML
81
0
0
18 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CMLBDL
119
11
0
07 Nov 2022
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Diego Martinez-Taboada
Dino Sejdinovic
CMLOffRL
43
0
0
02 Nov 2022
Inference and Denoise: Causal Inference-based Neural Speech Enhancement
Inference and Denoise: Causal Inference-based Neural Speech Enhancement
Tsun-An Hsieh
Chao-Han Huck Yang
Pin-Yu Chen
Sabato Marco Siniscalchi
Yu Tsao
CML
83
2
0
02 Nov 2022
Robust Direct Learning for Causal Data Fusion
Robust Direct Learning for Causal Data Fusion
Xinyu Li
Yilin Li
Daixin Wang
Longfei Li
Jun Zhou
CML
47
1
0
01 Nov 2022
Learning Individual Treatment Effects under Heterogeneous Interference
  in Networks
Learning Individual Treatment Effects under Heterogeneous Interference in Networks
Ziyu Zhao
Yuqi Bai
Kun Kuang
Ruoxuan Xiong
Leilei Gan
CML
65
8
0
25 Oct 2022
Adversarial De-confounding in Individualised Treatment Effects
  Estimation
Adversarial De-confounding in Individualised Treatment Effects Estimation
Vinod Kumar Chauhan
Soheila Molaei
Marzia Hoque Tania
Anshul Thakur
T. Zhu
David Clifton
CML
46
14
0
19 Oct 2022
Deep Counterfactual Estimation with Categorical Background Variables
Deep Counterfactual Estimation with Categorical Background Variables
E. Brouwer
CML
110
7
0
11 Oct 2022
Transfer Learning for Individual Treatment Effect Estimation
Transfer Learning for Individual Treatment Effect Estimation
Ahmed Aloui
Juncheng Dong
Cat P. Le
Vahid Tarokh
CML
116
2
0
01 Oct 2022
Neural Causal Models for Counterfactual Identification and Estimation
Neural Causal Models for Counterfactual Identification and Estimation
K. Xia
Yushu Pan
Elias Bareinboim
CML
100
39
0
30 Sep 2022
Weather2vec: Representation Learning for Causal Inference with Non-Local
  Confounding in Air Pollution and Climate Studies
Weather2vec: Representation Learning for Causal Inference with Non-Local Confounding in Air Pollution and Climate Studies
M. Tec
James G. Scott
Corwin M. Zigler
CML
44
12
0
25 Sep 2022
A Survey of Deep Causal Models and Their Industrial Applications
A Survey of Deep Causal Models and Their Industrial Applications
Zongyu Li
Xiaoning Guo
Siwei Qiang
CMLAI4CE
76
8
0
19 Sep 2022
Semi-supervised Batch Learning From Logged Data
Semi-supervised Batch Learning From Logged Data
Gholamali Aminian
Armin Behnamnia
R. Vega
Laura Toni
Chengchun Shi
Hamid R. Rabiee
Omar Rivasplata
Miguel R. D. Rodrigues
OffRL
53
1
0
15 Sep 2022
Normalizing Flows for Interventional Density Estimation
Normalizing Flows for Interventional Density Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
99
21
0
13 Sep 2022
Moderately-Balanced Representation Learning for Treatment Effects with
  Orthogonality Information
Moderately-Balanced Representation Learning for Treatment Effects with Orthogonality Information
Yiyan Huang
Cheuk Hang Leung
Shumin Ma
Qi Wu
DongDong Wang
Zhixiang Huang
OODCML
59
3
0
05 Sep 2022
Deep Stable Representation Learning on Electronic Health Records
Deep Stable Representation Learning on Electronic Health Records
Yingtao Luo
Zhaocheng Liu
Qiang Liu
OODBDLCML
79
3
0
03 Sep 2022
Learning to Infer Counterfactuals: Meta-Learning for Estimating Multiple
  Imbalanced Treatment Effects
Learning to Infer Counterfactuals: Meta-Learning for Estimating Multiple Imbalanced Treatment Effects
Guanglin Zhou
Lina Yao
Xiwei Xu
Chen Wang
Liming Zhu
OODCMLBDL
57
2
0
13 Aug 2022
Long-term Causal Effects Estimation via Latent Surrogates Representation
  Learning
Long-term Causal Effects Estimation via Latent Surrogates Representation Learning
Ruichu Cai
Weilin Chen
Zeqin Yang
Shu Wan
Chen Zheng
Xiaoqing Yang
Jiecheng Guo
CMLBDL
94
12
0
09 Aug 2022
DESCN: Deep Entire Space Cross Networks for Individual Treatment Effect
  Estimation
DESCN: Deep Entire Space Cross Networks for Individual Treatment Effect Estimation
Kailiang Zhong
Fengtong Xiao
Yan Ren
Yaorong Liang
Wenqing Yao
Xiaofeng Yang
Ling Cen
CML
52
21
0
19 Jul 2022
Device-Cloud Collaborative Recommendation via Meta Controller
Device-Cloud Collaborative Recommendation via Meta Controller
Jiangchao Yao
Feng Wang
Xichen Ding
Shaohu Chen
Bo Han
Jingren Zhou
Hongxia Yang
102
18
0
07 Jul 2022
Improving Data-driven Heterogeneous Treatment Effect Estimation Under
  Structure Uncertainty
Improving Data-driven Heterogeneous Treatment Effect Estimation Under Structure Uncertainty
Christopher Tran
Elena Zheleva
CML
68
4
0
25 Jun 2022
Interpretable Deep Causal Learning for Moderation Effects
Interpretable Deep Causal Learning for Moderation Effects
A. Caron
G. Baio
I. Manolopoulou
CMLOOD
50
2
0
21 Jun 2022
Benchmarking Heterogeneous Treatment Effect Models through the Lens of
  Interpretability
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
Jonathan Crabbé
Alicia Curth
Ioana Bica
M. Schaar
CML
110
16
0
16 Jun 2022
Continuous-Time Modeling of Counterfactual Outcomes Using Neural
  Controlled Differential Equations
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
Nabeel Seedat
F. Imrie
Alexis Bellot
Zhaozhi Qian
M. Schaar
OODCML
57
52
0
16 Jun 2022
Adversarial Counterfactual Environment Model Learning
Adversarial Counterfactual Environment Model Learning
Xiong-Hui Chen
Yang Yu
Zhenghong Zhu
Zhihua Yu
Zhen-Yu Chen
...
Yinan Wu
Hongqiu Wu
Rongjun Qin
Rui Ding
Fangsheng Huang
CMLOffRL
88
12
0
10 Jun 2022
Is More Data All You Need? A Causal Exploration
Is More Data All You Need? A Causal Exploration
Athanasios Vlontzos
Hadrien Reynaud
Bernhard Kainz
CML
63
2
0
06 Jun 2022
Estimating counterfactual treatment outcomes over time in complex
  multiagent scenarios
Estimating counterfactual treatment outcomes over time in complex multiagent scenarios
Keisuke Fujii
Koh Takeuchi
Atsushi Kuribayashi
Naoya Takeishi
Yoshinobu Kawahara
K. Takeda
CML
71
15
0
04 Jun 2022
Learning Disentangled Representations for Counterfactual Regression via
  Mutual Information Minimization
Learning Disentangled Representations for Counterfactual Regression via Mutual Information Minimization
Min Cheng
Xinru Liao
Quanlian Liu
Bin Ma
Jian Xu
Bo Zheng
CML
69
25
0
02 Jun 2022
Feature Selection for Discovering Distributional Treatment Effect
  Modifiers
Feature Selection for Discovering Distributional Treatment Effect Modifiers
Yoichi Chikahara
M. Yamada
H. Kashima
CML
51
5
0
01 Jun 2022
Comparison of meta-learners for estimating multi-valued treatment
  heterogeneous effects
Comparison of meta-learners for estimating multi-valued treatment heterogeneous effects
Naoufal Acharki
Ramiro Lugo
A. Bertoncello
Josselin Garnier
CML
70
13
0
29 May 2022
Generalization bounds and algorithms for estimating conditional average
  treatment effect of dosage
Generalization bounds and algorithms for estimating conditional average treatment effect of dosage
Alexis Bellot
Anish Dhir
G. Prando
CML
58
11
0
29 May 2022
An improved neural network model for treatment effect estimation
An improved neural network model for treatment effect estimation
Niki Kiriakidou
Christos Diou
CML
87
3
0
23 May 2022
Robust and Agnostic Learning of Conditional Distributional Treatment Effects
Robust and Agnostic Learning of Conditional Distributional Treatment Effects
Nathan Kallus
Miruna Oprescu
OODCML
122
12
0
23 May 2022
Neuroevolutionary Feature Representations for Causal Inference
Neuroevolutionary Feature Representations for Causal Inference
Michael C. Burkhart
Gabriel Ruiz
CMLOOD
44
2
0
21 May 2022
Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic
  Treatment Regimes
Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes
Changchang Yin
Ruoqi Liu
Jeffrey Caterino
Ping Zhang
OffRL
90
5
0
19 May 2022
Causal Transformer for Estimating Counterfactual Outcomes
Causal Transformer for Estimating Counterfactual Outcomes
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
107
99
0
14 Apr 2022
Deep Multi-Modal Structural Equations For Causal Effect Estimation With
  Unstructured Proxies
Deep Multi-Modal Structural Equations For Causal Effect Estimation With Unstructured Proxies
Shachi Deshpande
Kaiwen Wang
Dhruv Sreenivas
Zheng Li
Volodymyr Kuleshov
CMLSyDa
75
11
0
18 Mar 2022
Undersmoothing Causal Estimators with Generative Trees
Undersmoothing Causal Estimators with Generative Trees
Damian Machlanski
Spyridon Samothrakis
Paul Clarke
CML
96
1
0
16 Mar 2022
Multi-Task Adversarial Learning for Treatment Effect Estimation in
  Basket Trials
Multi-Task Adversarial Learning for Treatment Effect Estimation in Basket Trials
Zhixuan Chu
S. Rathbun
Sheng Li
CML
49
10
0
10 Mar 2022
Covariate-Balancing-Aware Interpretable Deep Learning models for
  Treatment Effect Estimation
Covariate-Balancing-Aware Interpretable Deep Learning models for Treatment Effect Estimation
Kan Chen
Qishuo Yin
Q. Long
CML
68
5
0
07 Mar 2022
Estimating Conditional Average Treatment Effects with Missing Treatment
  Information
Estimating Conditional Average Treatment Effects with Missing Treatment Information
Milan Kuzmanovic
Tobias Hatt
Stefan Feuerriegel
CML
50
6
0
02 Mar 2022
Neural Score Matching for High-Dimensional Causal Inference
Neural Score Matching for High-Dimensional Causal Inference
Oscar Clivio
Fabian Falck
B. Lehmann
George Deligiannidis
Chris Holmes
CML
66
8
0
01 Mar 2022
Estimating causal effects with optimization-based methods: A review and
  empirical comparison
Estimating causal effects with optimization-based methods: A review and empirical comparison
Martin Cousineau
V. Verter
Susan Murphy
J. Pineau
CML
40
9
0
28 Feb 2022
Combining Observational and Randomized Data for Estimating Heterogeneous
  Treatment Effects
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
90
32
0
25 Feb 2022
Ensemble Method for Estimating Individualized Treatment Effects
Ensemble Method for Estimating Individualized Treatment Effects
K. Han
Hanghao Wu
CMLFedML
27
4
0
25 Feb 2022
Learning Infomax and Domain-Independent Representations for Causal
  Effect Inference with Real-World Data
Learning Infomax and Domain-Independent Representations for Causal Effect Inference with Real-World Data
Zhixuan Chu
S. Rathbun
Sheng Li
CMLOOD
83
15
0
22 Feb 2022
Diffusion Causal Models for Counterfactual Estimation
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffMBDL
99
76
0
21 Feb 2022
Hierarchical Interpretation of Neural Text Classification
Hierarchical Interpretation of Neural Text Classification
Hanqi Yan
Lin Gui
Yulan He
105
14
0
20 Feb 2022
Previous
123456789
Next