ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.03661
  4. Cited By
Learning Representations for Counterfactual Inference
v1v2v3 (latest)

Learning Representations for Counterfactual Inference

12 May 2016
Fredrik D. Johansson
Uri Shalit
David Sontag
    CMLOODBDL
ArXiv (abs)PDFHTML

Papers citing "Learning Representations for Counterfactual Inference"

50 / 414 papers shown
Title
Causal Effect Estimation: Recent Advances, Challenges, and Opportunities
Causal Effect Estimation: Recent Advances, Challenges, and Opportunities
Zhixuan Chu
Jia-Bin Huang
Ruopeng Li
Wei Chu
Sheng Li
CMLOOD
143
9
0
02 Feb 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
229
12
0
29 Jan 2023
Zero-shot causal learning
Zero-shot causal learning
H. Nilforoshan
Michael Moor
Yusuf Roohani
Yining Chen
Anja vSurina
Michihiro Yasunaga
Sara Oblak
J. Leskovec
CMLBDLOffRL
166
15
0
28 Jan 2023
Estimating Causal Effects using a Multi-task Deep Ensemble
Estimating Causal Effects using a Multi-task Deep Ensemble
Ziyang Jiang
Zhuoran Hou
Yi-Ling Liu
Yiman Ren
Keyu Li
David Carlson
CML
147
6
0
26 Jan 2023
Proximal Causal Learning of Conditional Average Treatment Effects
Proximal Causal Learning of Conditional Average Treatment Effects
Erik Sverdrup
Yifan Cui
CML
121
6
0
26 Jan 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
105
2
0
16 Jan 2023
Unpacking the "Black Box" of AI in Education
Unpacking the "Black Box" of AI in Education
Nabeel Gillani
R. Eynon
Catherine Chiabaut
Kelsey Finkel
100
67
0
31 Dec 2022
Deep Causal Learning for Robotic Intelligence
Deep Causal Learning for Robotic Intelligence
Yongqian Li
CML
126
6
0
23 Dec 2022
TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
  Treatment Perspective
TCFimt: Temporal Counterfactual Forecasting from Individual Multiple Treatment Perspective
Pengfei Xi
Guifeng Wang
Zhipeng Hu
Yu Xiong
Ming‐Fu Gong
...
Runze Wu
Yu-qiong Ding
Tangjie Lv
Changjie Fan
Xiangnan Feng
CMLAI4TSAI4CE
65
0
0
17 Dec 2022
Instrumental Variables in Causal Inference and Machine Learning: A
  Survey
Instrumental Variables in Causal Inference and Machine Learning: A Survey
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Leilei Gan
SyDaCML
114
8
0
12 Dec 2022
Direct Heterogeneous Causal Learning for Resource Allocation Problems in
  Marketing
Direct Heterogeneous Causal Learning for Resource Allocation Problems in Marketing
Hao Zhou
Shaoming Li
Guibin Jiang
Jiaqi Zheng
Dong Wang
84
25
0
28 Nov 2022
Data-Driven Offline Decision-Making via Invariant Representation
  Learning
Data-Driven Offline Decision-Making via Invariant Representation Learning
Qi
Yi-Hsun Su
Aviral Kumar
Sergey Levine
OffRL
139
26
0
21 Nov 2022
Counterfactual Learning with Multioutput Deep Kernels
Counterfactual Learning with Multioutput Deep Kernels
A. Caron
G. Baio
I. Manolopoulou
BDLCMLOffRL
112
2
0
20 Nov 2022
Confounder Balancing for Instrumental Variable Regression with Latent
  Variable
Confounder Balancing for Instrumental Variable Regression with Latent Variable
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Bo Li
Leilei Gan
CML
127
0
0
18 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CMLBDL
149
12
0
07 Nov 2022
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Diego Martinez-Taboada
Dino Sejdinovic
CMLOffRL
90
0
0
02 Nov 2022
Inference and Denoise: Causal Inference-based Neural Speech Enhancement
Inference and Denoise: Causal Inference-based Neural Speech Enhancement
Tsun-An Hsieh
Chao-Han Huck Yang
Pin-Yu Chen
Sabato Marco Siniscalchi
Yu Tsao
CML
117
2
0
02 Nov 2022
Robust Direct Learning for Causal Data Fusion
Robust Direct Learning for Causal Data Fusion
Xinyu Li
Yilin Li
Daixin Wang
Longfei Li
Jun Zhou
CML
93
1
0
01 Nov 2022
Learning Individual Treatment Effects under Heterogeneous Interference
  in Networks
Learning Individual Treatment Effects under Heterogeneous Interference in Networks
Ziyu Zhao
Yuqi Bai
Kun Kuang
Ruoxuan Xiong
Leilei Gan
CML
134
11
0
25 Oct 2022
Adversarial De-confounding in Individualised Treatment Effects
  Estimation
Adversarial De-confounding in Individualised Treatment Effects Estimation
Vinod Kumar Chauhan
Soheila Molaei
Marzia Hoque Tania
Anshul Thakur
T. Zhu
David Clifton
CML
94
15
0
19 Oct 2022
Deep Counterfactual Estimation with Categorical Background Variables
Deep Counterfactual Estimation with Categorical Background Variables
E. Brouwer
CML
156
7
0
11 Oct 2022
Transfer Learning for Individual Treatment Effect Estimation
Transfer Learning for Individual Treatment Effect Estimation
Ahmed Aloui
Juncheng Dong
Cat P. Le
Vahid Tarokh
CML
187
2
0
01 Oct 2022
Neural Causal Models for Counterfactual Identification and Estimation
Neural Causal Models for Counterfactual Identification and Estimation
K. Xia
Yushu Pan
Elias Bareinboim
CML
142
45
0
30 Sep 2022
Weather2vec: Representation Learning for Causal Inference with Non-Local
  Confounding in Air Pollution and Climate Studies
Weather2vec: Representation Learning for Causal Inference with Non-Local Confounding in Air Pollution and Climate Studies
M. Tec
James G. Scott
Corwin M. Zigler
CML
92
12
0
25 Sep 2022
A Survey of Deep Causal Models and Their Industrial Applications
A Survey of Deep Causal Models and Their Industrial Applications
Zongyu Li
Xiaoning Guo
Siwei Qiang
CMLAI4CE
276
9
0
19 Sep 2022
Semi-supervised Batch Learning From Logged Data
Semi-supervised Batch Learning From Logged Data
Gholamali Aminian
Armin Behnamnia
R. Vega
Laura Toni
Chengchun Shi
Hamid R. Rabiee
Omar Rivasplata
Miguel R. D. Rodrigues
OffRL
104
1
0
15 Sep 2022
Normalizing Flows for Interventional Density Estimation
Normalizing Flows for Interventional Density Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
207
21
0
13 Sep 2022
Moderately-Balanced Representation Learning for Treatment Effects with
  Orthogonality Information
Moderately-Balanced Representation Learning for Treatment Effects with Orthogonality Information
Yiyan Huang
Cheuk Hang Leung
Shumin Ma
Qi Wu
DongDong Wang
Zhixiang Huang
OODCML
99
3
0
05 Sep 2022
Deep Stable Representation Learning on Electronic Health Records
Deep Stable Representation Learning on Electronic Health Records
Yingtao Luo
Zhaocheng Liu
Qiang Liu
OODBDLCML
121
5
0
03 Sep 2022
Learning to Infer Counterfactuals: Meta-Learning for Estimating Multiple
  Imbalanced Treatment Effects
Learning to Infer Counterfactuals: Meta-Learning for Estimating Multiple Imbalanced Treatment Effects
Guanglin Zhou
Lina Yao
Xiwei Xu
Chen Wang
Liming Zhu
OODCMLBDL
92
2
0
13 Aug 2022
Long-term Causal Effects Estimation via Latent Surrogates Representation
  Learning
Long-term Causal Effects Estimation via Latent Surrogates Representation Learning
Ruichu Cai
Weilin Chen
Zeqin Yang
Shu Wan
Chen Zheng
Xiaoqing Yang
Jiecheng Guo
CMLBDL
142
12
0
09 Aug 2022
DESCN: Deep Entire Space Cross Networks for Individual Treatment Effect
  Estimation
DESCN: Deep Entire Space Cross Networks for Individual Treatment Effect Estimation
Kailiang Zhong
Fengtong Xiao
Yan Ren
Yaorong Liang
Wenqing Yao
Xiaofeng Yang
Ling Cen
CML
68
22
0
19 Jul 2022
Device-Cloud Collaborative Recommendation via Meta Controller
Device-Cloud Collaborative Recommendation via Meta Controller
Jiangchao Yao
Feng Wang
Xichen Ding
Shaohu Chen
Bo Han
Jingren Zhou
Hongxia Yang
126
21
0
07 Jul 2022
Improving Data-driven Heterogeneous Treatment Effect Estimation Under
  Structure Uncertainty
Improving Data-driven Heterogeneous Treatment Effect Estimation Under Structure Uncertainty
Christopher Tran
Elena Zheleva
CML
99
4
0
25 Jun 2022
Interpretable Deep Causal Learning for Moderation Effects
Interpretable Deep Causal Learning for Moderation Effects
A. Caron
G. Baio
I. Manolopoulou
CMLOOD
95
2
0
21 Jun 2022
Benchmarking Heterogeneous Treatment Effect Models through the Lens of
  Interpretability
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
Jonathan Crabbé
Alicia Curth
Ioana Bica
M. Schaar
CML
136
18
0
16 Jun 2022
Continuous-Time Modeling of Counterfactual Outcomes Using Neural
  Controlled Differential Equations
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
Nabeel Seedat
F. Imrie
Alexis Bellot
Zhaozhi Qian
M. Schaar
OODCML
75
57
0
16 Jun 2022
Adversarial Counterfactual Environment Model Learning
Adversarial Counterfactual Environment Model Learning
Xiong-Hui Chen
Yang Yu
Zhenghong Zhu
Zhihua Yu
Zhen-Yu Chen
...
Yinan Wu
Hongqiu Wu
Rongjun Qin
Rui Ding
Fangsheng Huang
CMLOffRL
106
13
0
10 Jun 2022
Is More Data All You Need? A Causal Exploration
Is More Data All You Need? A Causal Exploration
Athanasios Vlontzos
Hadrien Reynaud
Bernhard Kainz
CML
102
2
0
06 Jun 2022
Estimating counterfactual treatment outcomes over time in complex
  multiagent scenarios
Estimating counterfactual treatment outcomes over time in complex multiagent scenarios
Keisuke Fujii
Koh Takeuchi
Atsushi Kuribayashi
Naoya Takeishi
Yoshinobu Kawahara
K. Takeda
CML
155
17
0
04 Jun 2022
Learning Disentangled Representations for Counterfactual Regression via
  Mutual Information Minimization
Learning Disentangled Representations for Counterfactual Regression via Mutual Information Minimization
Min Cheng
Xinru Liao
Quanlian Liu
Bin Ma
Jian Xu
Bo Zheng
CML
87
27
0
02 Jun 2022
Feature Selection for Discovering Distributional Treatment Effect
  Modifiers
Feature Selection for Discovering Distributional Treatment Effect Modifiers
Yoichi Chikahara
M. Yamada
H. Kashima
CML
179
5
0
01 Jun 2022
Comparison of meta-learners for estimating multi-valued treatment
  heterogeneous effects
Comparison of meta-learners for estimating multi-valued treatment heterogeneous effects
Naoufal Acharki
Ramiro Lugo
A. Bertoncello
Josselin Garnier
CML
114
15
0
29 May 2022
Generalization bounds and algorithms for estimating conditional average
  treatment effect of dosage
Generalization bounds and algorithms for estimating conditional average treatment effect of dosage
Alexis Bellot
Anish Dhir
G. Prando
CML
103
11
0
29 May 2022
An improved neural network model for treatment effect estimation
An improved neural network model for treatment effect estimation
Niki Kiriakidou
Christos Diou
CML
95
3
0
23 May 2022
Robust and Agnostic Learning of Conditional Distributional Treatment Effects
Robust and Agnostic Learning of Conditional Distributional Treatment Effects
Nathan Kallus
Miruna Oprescu
OODCML
186
13
0
23 May 2022
Neuroevolutionary Feature Representations for Causal Inference
Neuroevolutionary Feature Representations for Causal Inference
Michael C. Burkhart
Gabriel Ruiz
CMLOOD
55
2
0
21 May 2022
Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic
  Treatment Regimes
Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes
Changchang Yin
Ruoqi Liu
Jeffrey Caterino
Ping Zhang
OffRL
135
7
0
19 May 2022
Causal Transformer for Estimating Counterfactual Outcomes
Causal Transformer for Estimating Counterfactual Outcomes
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
195
108
0
14 Apr 2022
Deep Multi-Modal Structural Equations For Causal Effect Estimation With
  Unstructured Proxies
Deep Multi-Modal Structural Equations For Causal Effect Estimation With Unstructured Proxies
Shachi Deshpande
Kaiwen Wang
Dhruv Sreenivas
Zheng Li
Volodymyr Kuleshov
CMLSyDa
101
13
0
18 Mar 2022
Previous
123456789
Next