Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.03661
Cited By
v1
v2
v3 (latest)
Learning Representations for Counterfactual Inference
12 May 2016
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Representations for Counterfactual Inference"
50 / 403 papers shown
Title
Deconfounding Scores: Feature Representations for Causal Effect Estimation with Weak Overlap
Alexander DÁmour
Alexander M. Franks
CML
48
10
0
12 Apr 2021
Matched sample selection with GANs for mitigating attribute confounding
Chandan Singh
Guha Balakrishnan
Pietro Perona
GAN
69
6
0
24 Mar 2021
NCoRE: Neural Counterfactual Representation Learning for Combinations of Treatments
S. Parbhoo
Stefan Bauer
Patrick Schwab
CML
BDL
60
16
0
20 Mar 2021
VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments
Lizhen Nie
Mao Ye
Qiang Liu
D. Nicolae
CML
77
71
0
14 Mar 2021
Treatment Effect Estimation using Invariant Risk Minimization
Abhin Shah
Kartik Ahuja
Karthikeyan Shanmugam
Dennis L. Wei
Kush R. Varshney
Amit Dhurandhar
CML
OOD
56
2
0
13 Mar 2021
Limitations of Post-Hoc Feature Alignment for Robustness
Collin Burns
Jacob Steinhardt
OOD
97
23
0
10 Mar 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
135
110
0
08 Mar 2021
Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression
Junhyung Park
Uri Shalit
Bernhard Schölkopf
Krikamol Muandet
CML
104
33
0
16 Feb 2021
Shrinkage Bayesian Causal Forests for Heterogeneous Treatment Effects Estimation
A. Caron
G. Baio
I. Manolopoulou
CML
73
16
0
12 Feb 2021
Selecting Treatment Effects Models for Domain Adaptation Using Causal Knowledge
Trent Kyono
Ioana Bica
Zhaozhi Qian
Mihaela van der Schaar
OOD
CML
20
7
0
11 Feb 2021
Generating Synthetic Text Data to Evaluate Causal Inference Methods
Zach Wood-Doughty
I. Shpitser
Mark Dredze
SyDa
CML
60
11
0
10 Feb 2021
Grab the Reins of Crowds: Estimating the Effects of Crowd Movement Guidance Using Causal Inference
Koh Takeuchi
Ryo Nishida
Hisashi Kashima
Masaki Onishi
CML
21
4
0
08 Feb 2021
Learning Matching Representations for Individualized Organ Transplantation Allocation
Can Xu
Ahmed Alaa
Ioana Bica
B. Ershoff
M. Cannesson
M. Schaar
OOD
42
7
0
28 Jan 2021
Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms
Alicia Curth
M. Schaar
CML
181
149
0
26 Jan 2021
Estimating Average Treatment Effects via Orthogonal Regularization
Tobias Hatt
Stefan Feuerriegel
CML
236
36
0
21 Jan 2021
Model Compression for Domain Adaptation through Causal Effect Estimation
Guy Rotman
Amir Feder
Roi Reichart
CML
77
7
0
18 Jan 2021
Intact-VAE: Estimating Treatment Effects under Unobserved Confounding
Pengzhou (Abel) Wu
Kenji Fukumizu
CML
89
13
0
17 Jan 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
306
500
0
31 Dec 2020
CAMTA: Causal Attention Model for Multi-touch Attribution
Sachin Kumar
Garima Gupta
Ranjitha Prasad
Arnab Chatterjee
Lovekesh Vig
Gautam M. Shroff
CML
HAI
35
10
0
21 Dec 2020
Fundamental Limits and Tradeoffs in Invariant Representation Learning
Han Zhao
Chen Dan
Bryon Aragam
Tommi Jaakkola
Geoffrey J. Gordon
Pradeep Ravikumar
FaML
90
45
0
19 Dec 2020
Treatment Targeting by AUUC Maximization with Generalization Guarantees
Artem Betlei
Eustache Diemert
Massih-Reza Amini
CML
57
5
0
17 Dec 2020
The Causal Learning of Retail Delinquency
Yiyan Huang
Cheuk Hang Leung
Xing Yan
Qi Wu
Nanbo Peng
DongDong Wang
Zhixiang Huang
CML
60
8
0
17 Dec 2020
Causality-Aware Neighborhood Methods for Recommender Systems
Masahiro Sato
S. Takemori
Janmajay Singh
Qian Zhang
BDL
CML
16
7
0
17 Dec 2020
Proactive Pseudo-Intervention: Causally Informed Contrastive Learning For Interpretable Vision Models
Dong Wang
Yuewei Yang
Chenyang Tao
Zhe Gan
Liqun Chen
Fanjie Kong
Ricardo Henao
Lawrence Carin
57
0
0
06 Dec 2020
Balance Regularized Neural Network Models for Causal Effect Estimation
Mehrdad Farajtabar
Andrew Lee
Yuanjian Feng
Vishal Gupta
Peter Dolan
Harish Chandran
M. Szummer
CML
39
6
0
23 Nov 2020
Confounding Feature Acquisition for Causal Effect Estimation
Shirly Wang
S. Yi
Shalmali Joshi
Marzyeh Ghassemi
CML
33
2
0
17 Nov 2020
Causality-aware counterfactual confounding adjustment as an alternative to linear residualization in anticausal prediction tasks based on linear learners
E. C. Neto
OOD
CML
61
6
0
09 Nov 2020
Doubly Robust Off-Policy Learning on Low-Dimensional Manifolds by Deep Neural Networks
Minshuo Chen
Hao Liu
Wenjing Liao
T. Zhao
CML
OOD
OffRL
36
7
0
03 Nov 2020
Adapting Neural Networks for Uplift Models
Mouloud Belbahri
Olivier Gandouet
Ghaith Kazma
43
11
0
30 Oct 2020
DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting Time-varying Confounding in Modern Longitudinal Observational Data
Yanbo Xu
Cao Xiao
Jimeng Sun
BDL
OOD
CML
23
1
0
28 Oct 2020
Counterfactual Representation Learning with Balancing Weights
Serge Assaad
Shuxi Zeng
Chenyang Tao
Shounak Datta
Nikhil Mehta
Ricardo Henao
Fan Li
Lawrence Carin
CML
OOD
168
65
0
23 Oct 2020
Poincare: Recommending Publication Venues via Treatment Effect Estimation
Ryoma Sato
M. Yamada
H. Kashima
CML
42
2
0
19 Oct 2020
Double Robust Representation Learning for Counterfactual Prediction
Shuxi Zeng
Serge Assaad
Chenyang Tao
Shounak Datta
Lawrence Carin
Fan Li
OOD
CML
55
6
0
15 Oct 2020
GraphITE: Estimating Individual Effects of Graph-structured Treatments
Shonosuke Harada
H. Kashima
CML
97
23
0
29 Sep 2020
Learning from eXtreme Bandit Feedback
Romain Lopez
Inderjit S. Dhillon
Michael I. Jordan
OffRL
91
25
0
27 Sep 2020
Adjusting for Confounders with Text: Challenges and an Empirical Evaluation Framework for Causal Inference
Galen Cassebeer Weld
Peter West
M. Glenski
David Arbour
Ryan Rossi
Tim Althoff
CML
99
20
0
21 Sep 2020
Estimating Individual Treatment Effects using Non-Parametric Regression Models: a Review
A. Caron
G. Baio
I. Manolopoulou
CML
91
56
0
14 Sep 2020
Information Theoretic Counterfactual Learning from Missing-Not-At-Random Feedback
Zifeng Wang
Xi Chen
Rui Wen
Shao-Lun Huang
E. Kuruoglu
Yefeng Zheng
BDL
CML
OffRL
70
84
0
06 Sep 2020
BLOB : A Probabilistic Model for Recommendation that Combines Organic and Bandit Signals
Otmane Sakhi
Stephen Bonner
D. Rohde
Flavian Vasile
94
37
0
28 Aug 2020
Estimating Individual Treatment Effects with Time-Varying Confounders
Ruoqi Liu
Changchang Yin
Ping Zhang
CML
90
27
0
27 Aug 2020
Hi-CI: Deep Causal Inference in High Dimensions
Ankit Sharma
Garima Gupta
Ranjitha Prasad
Arnab Chatterjee
Lovekesh Vig
Gautam M. Shroff
BDL
CML
61
4
0
22 Aug 2020
Long-Term Effect Estimation with Surrogate Representation
Lu Cheng
Ruocheng Guo
Huan Liu
CML
44
20
0
19 Aug 2020
Estimating Causal Effects with the Neural Autoregressive Density Estimator
Sergio Garrido
S. Borysov
Jeppe Rich
Francisco Câmara Pereira
CML
42
7
0
17 Aug 2020
On Learning Language-Invariant Representations for Universal Machine Translation
Hao Zhao
Junjie Hu
Andrej Risteski
103
8
0
11 Aug 2020
A Causal Lens for Peeking into Black Box Predictive Models: Predictive Model Interpretation via Causal Attribution
A. Khademi
Vasant Honavar
CML
39
9
0
01 Aug 2020
An Interpretable Probabilistic Approach for Demystifying Black-box Predictive Models
Catarina Moreira
Yu-Liang Chou
M. Velmurugan
Chun Ouyang
Renuka Sindhgatta
P. Bruza
114
58
0
21 Jul 2020
Causal Inference using Gaussian Processes with Structured Latent Confounders
Sam Witty
Kenta Takatsu
David D. Jensen
Vikash K. Mansinghka
CML
135
19
0
14 Jul 2020
A unified survey of treatment effect heterogeneity modeling and uplift modeling
Weijia Zhang
Jiuyong Li
Lin Liu
CML
83
60
0
14 Jul 2020
On Linear Identifiability of Learned Representations
Geoffrey Roeder
Luke Metz
Diederik P. Kingma
CML
70
85
0
01 Jul 2020
Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models
Andrew Jesson
Sören Mindermann
Uri Shalit
Y. Gal
CML
66
74
0
01 Jul 2020
Previous
1
2
3
4
5
6
7
8
9
Next