ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.03661
  4. Cited By
Learning Representations for Counterfactual Inference
v1v2v3 (latest)

Learning Representations for Counterfactual Inference

12 May 2016
Fredrik D. Johansson
Uri Shalit
David Sontag
    CMLOODBDL
ArXiv (abs)PDFHTML

Papers citing "Learning Representations for Counterfactual Inference"

50 / 414 papers shown
Title
Undersmoothing Causal Estimators with Generative Trees
Undersmoothing Causal Estimators with Generative Trees
Damian Machlanski
Spyridon Samothrakis
Paul Clarke
CML
134
1
0
16 Mar 2022
Multi-Task Adversarial Learning for Treatment Effect Estimation in
  Basket Trials
Multi-Task Adversarial Learning for Treatment Effect Estimation in Basket Trials
Zhixuan Chu
S. Rathbun
Sheng Li
CML
82
10
0
10 Mar 2022
Covariate-Balancing-Aware Interpretable Deep Learning models for
  Treatment Effect Estimation
Covariate-Balancing-Aware Interpretable Deep Learning models for Treatment Effect Estimation
Kan Chen
Qishuo Yin
Q. Long
CML
111
5
0
07 Mar 2022
Estimating Conditional Average Treatment Effects with Missing Treatment
  Information
Estimating Conditional Average Treatment Effects with Missing Treatment Information
Milan Kuzmanovic
Tobias Hatt
Stefan Feuerriegel
CML
103
7
0
02 Mar 2022
Neural Score Matching for High-Dimensional Causal Inference
Neural Score Matching for High-Dimensional Causal Inference
Oscar Clivio
Fabian Falck
B. Lehmann
George Deligiannidis
Chris Holmes
CML
99
8
0
01 Mar 2022
Estimating causal effects with optimization-based methods: A review and
  empirical comparison
Estimating causal effects with optimization-based methods: A review and empirical comparison
Martin Cousineau
V. Verter
Susan Murphy
J. Pineau
CML
77
10
0
28 Feb 2022
Combining Observational and Randomized Data for Estimating Heterogeneous
  Treatment Effects
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
136
35
0
25 Feb 2022
Ensemble Method for Estimating Individualized Treatment Effects
Ensemble Method for Estimating Individualized Treatment Effects
K. Han
Hanghao Wu
CMLFedML
56
5
0
25 Feb 2022
Learning Infomax and Domain-Independent Representations for Causal
  Effect Inference with Real-World Data
Learning Infomax and Domain-Independent Representations for Causal Effect Inference with Real-World Data
Zhixuan Chu
S. Rathbun
Sheng Li
CMLOOD
112
15
0
22 Feb 2022
Diffusion Causal Models for Counterfactual Estimation
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffMBDL
136
84
0
21 Feb 2022
Hierarchical Interpretation of Neural Text Classification
Hierarchical Interpretation of Neural Text Classification
Hanqi Yan
Lin Gui
Yulan He
159
14
0
20 Feb 2022
Benign-Overfitting in Conditional Average Treatment Effect Prediction
  with Linear Regression
Benign-Overfitting in Conditional Average Treatment Effect Prediction with Linear Regression
Masahiro Kato
Masaaki Imaizumi
CMLOOD
121
1
0
10 Feb 2022
To Impute or not to Impute? Missing Data in Treatment Effect Estimation
To Impute or not to Impute? Missing Data in Treatment Effect Estimation
Jeroen Berrevoets
F. Imrie
T. Kyono
James Jordon
M. Schaar
147
19
0
04 Feb 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect
  Estimation
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
165
31
0
02 Feb 2022
Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit
  Performance
Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance
Gabriel Okasa
CML
99
7
0
30 Jan 2022
A Causal Lens for Controllable Text Generation
A Causal Lens for Controllable Text Generation
Zhiting Hu
Erran L. Li
130
68
0
22 Jan 2022
Individual Treatment Effect Estimation Through Controlled Neural Network
  Training in Two Stages
Individual Treatment Effect Estimation Through Controlled Neural Network Training in Two Stages
Naveen Nair
Karthik S. Gurumoorthy
Dinesh Mandalapu
CML
68
4
0
21 Jan 2022
DRTCI: Learning Disentangled Representations for Temporal Causal
  Inference
DRTCI: Learning Disentangled Representations for Temporal Causal Inference
Garima Gupta
Lovekesh Vig
Gautam M. Shroff
BDLOODCML
56
0
0
20 Jan 2022
Efficiently Disentangle Causal Representations
Efficiently Disentangle Causal Representations
Yuanpeng Li
Joel Hestness
Mohamed Elhoseiny
Liang Zhao
Kenneth Church
OODCML
51
1
0
06 Jan 2022
BITES: Balanced Individual Treatment Effect for Survival data
BITES: Balanced Individual Treatment Effect for Survival data
Stefan Schrod
Andreas Schäfer
S. Solbrig
R. Lohmayer
W. Gronwald
P. Oefner
T. Beissbarth
Rainer Spang
H. Zacharias
Michael Altenbuchinger
CML
77
24
0
05 Jan 2022
Deep Treatment-Adaptive Network for Causal Inference
Deep Treatment-Adaptive Network for Causal Inference
Qian Li
Zhichao Wang
Shaowu Liu
Gang Li
Guandong Xu
CMLBDLOOD
91
11
0
27 Dec 2021
CausalMTA: Eliminating the User Confounding Bias for Causal Multi-touch
  Attribution
CausalMTA: Eliminating the User Confounding Bias for Causal Multi-touch Attribution
Di Yao
Chang Gong
Lei Zhang
Sheng Chen
Jingping Bi
CML
106
13
0
21 Dec 2021
Causal Knowledge Guided Societal Event Forecasting
Causal Knowledge Guided Societal Event Forecasting
Songgaojun Deng
Huzefa Rangwala
Yue Ning
AI4TS
86
2
0
10 Dec 2021
Enhancing Counterfactual Classification via Self-Training
Enhancing Counterfactual Classification via Self-Training
Ruijiang Gao
Max Biggs
Wei-Ju Sun
Ligong Han
CMLOffRL
215
6
0
08 Dec 2021
Non parametric estimation of causal populations in a counterfactual
  scenario
Non parametric estimation of causal populations in a counterfactual scenario
Céline Beji
Florian Yger
Jamal Atif
CMLOOD
42
0
0
08 Dec 2021
Disentangled Counterfactual Recurrent Networks for Treatment Effect
  Inference over Time
Disentangled Counterfactual Recurrent Networks for Treatment Effect Inference over Time
Jeroen Berrevoets
Alicia Curth
Ioana Bica
E. McKinney
M. Schaar
CMLBDLAI4CE
114
17
0
07 Dec 2021
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over
  Time Using Noisy Proxies
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies
Milan Kuzmanovic
Tobias Hatt
Stefan Feuerriegel
CML
128
22
0
06 Dec 2021
AI Assurance using Causal Inference: Application to Public Policy
AI Assurance using Causal Inference: Application to Public Policy
A. Svetovidov
Abdul Rahman
Feras A. Batarseh
CML
53
2
0
01 Dec 2021
Loss Functions for Discrete Contextual Pricing with Observational Data
Loss Functions for Discrete Contextual Pricing with Observational Data
Max Biggs
Ruijiang Gao
Wei-Ju Sun
224
10
0
18 Nov 2021
Causal Effect Variational Autoencoder with Uniform Treatment
Causal Effect Variational Autoencoder with Uniform Treatment
Daniel Jiwoong Im
Kyunghyun Cho
N. Razavian
OODCMLBDL
94
9
0
16 Nov 2021
Variational Auto-Encoder Architectures that Excel at Causal Inference
Variational Auto-Encoder Architectures that Excel at Causal Inference
Negar Hassanpour
Russell Greiner
BDLCML
61
3
0
11 Nov 2021
Interpretable Personalized Experimentation
Interpretable Personalized Experimentation
Han Wu
S. Tan
Weiwei Li
Mia Garrard
Adam Obeng
Drew Dimmery
Shaun Singh
Hanson Wang
Daniel R. Jiang
E. Bakshy
91
7
0
05 Nov 2021
A Theoretical Analysis on Independence-driven Importance Weighting for
  Covariate-shift Generalization
A Theoretical Analysis on Independence-driven Importance Weighting for Covariate-shift Generalization
Renzhe Xu
Xingxuan Zhang
Zheyan Shen
Tong Zhang
Peng Cui
OOD
196
30
0
03 Nov 2021
Cycle-Balanced Representation Learning For Counterfactual Inference
Cycle-Balanced Representation Learning For Counterfactual Inference
Guanglin Zhou
Weitong Chen
Xiwei Xu
Chen Wang
Liming Zhu
CMLOOD
55
12
0
29 Oct 2021
Extracting Expert's Goals by What-if Interpretable Modeling
Extracting Expert's Goals by What-if Interpretable Modeling
C. Chang
George Adam
Rich Caruana
Anna Goldenberg
OffRL
105
0
0
28 Oct 2021
Heterogeneous Effects of Software Patches in a Multiplayer Online Battle
  Arena Game
Heterogeneous Effects of Software Patches in a Multiplayer Online Battle Arena Game
Yuzi He
Christopher Tran
Julie Jiang
Keith Burghardt
Emilio Ferrara
Elena Zheleva
Kristina Lerman
61
10
0
27 Oct 2021
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
  Data
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data
Alicia Curth
Changhee Lee
M. Schaar
CML
101
31
0
26 Oct 2021
Causal Effect Estimation using Variational Information Bottleneck
Causal Effect Estimation using Variational Information Bottleneck
Zhenyu Lu
Yurong Cheng
Mingjun Zhong
G. Stoian
Ye Yuan
Guoren Wang
CML
60
4
0
26 Oct 2021
Covariate Balancing Methods for Randomized Controlled Trials Are Not
  Adversarially Robust
Covariate Balancing Methods for Randomized Controlled Trials Are Not Adversarially Robust
Hossein Babaei
Sina Alemohammad
Richard Baraniuk
161
0
0
25 Oct 2021
$β$-Intact-VAE: Identifying and Estimating Causal Effects under
  Limited Overlap
βββ-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap
Pengzhou (Abel) Wu
Kenji Fukumizu
CML
113
15
0
11 Oct 2021
Estimating Potential Outcome Distributions with Collaborating Causal
  Networks
Estimating Potential Outcome Distributions with Collaborating Causal Networks
Tianhui Zhou
William E Carson IV
David Carlson
CML
239
9
0
04 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDLOODCML
144
3
0
30 Sep 2021
Heterogeneous Treatment Effect Estimation using machine learning for
  Healthcare application: tutorial and benchmark
Heterogeneous Treatment Effect Estimation using machine learning for Healthcare application: tutorial and benchmark
Yaobin Ling
Pulakesh Upadhyaya
Luyao Chen
Xiaoqian Jiang
Yejin Kim
CML
241
22
0
27 Sep 2021
Estimating Categorical Counterfactuals via Deep Twin Networks
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OODCMLBDL
149
17
0
04 Sep 2021
E-Commerce Promotions Personalization via Online Multiple-Choice
  Knapsack with Uplift Modeling
E-Commerce Promotions Personalization via Online Multiple-Choice Knapsack with Uplift Modeling
Javier Albert
Dmitri Goldenberg
121
28
0
11 Aug 2021
The Bias-Variance Tradeoff of Doubly Robust Estimator with Targeted
  $L_1$ regularized Neural Networks Predictions
The Bias-Variance Tradeoff of Doubly Robust Estimator with Targeted L1L_1L1​ regularized Neural Networks Predictions
M. Rostami
O. Saarela
M. Escobar
101
1
0
02 Aug 2021
Doing Great at Estimating CATE? On the Neglected Assumptions in
  Benchmark Comparisons of Treatment Effect Estimators
Doing Great at Estimating CATE? On the Neglected Assumptions in Benchmark Comparisons of Treatment Effect Estimators
Alicia Curth
M. Schaar
CML
66
7
0
28 Jul 2021
CETransformer: Casual Effect Estimation via Transformer Based
  Representation Learning
CETransformer: Casual Effect Estimation via Transformer Based Representation Learning
Zhenyu Guo
Shuai Zheng
Zhizhe Liu
Kun Yan
Zhenfeng Zhu
CML
84
16
0
19 Jul 2021
Auto IV: Counterfactual Prediction via Automatic Instrumental Variable
  Decomposition
Auto IV: Counterfactual Prediction via Automatic Instrumental Variable Decomposition
Junkun Yuan
Anpeng Wu
Kun Kuang
Yangqiu Song
Runze Wu
Leilei Gan
Lanfen Lin
CML
135
40
0
13 Jul 2021
The Causal-Neural Connection: Expressiveness, Learnability, and
  Inference
The Causal-Neural Connection: Expressiveness, Learnability, and Inference
K. Xia
Kai-Zhan Lee
Yoshua Bengio
Elias Bareinboim
CML
147
117
0
02 Jul 2021
Previous
123456789
Next