Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1605.03661
Cited By
v1
v2
v3 (latest)
Learning Representations for Counterfactual Inference
12 May 2016
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Representations for Counterfactual Inference"
50 / 432 papers shown
Device-Cloud Collaborative Recommendation via Meta Controller
Knowledge Discovery and Data Mining (KDD), 2022
Jiangchao Yao
Feng Wang
Xichen Ding
Shaohu Chen
Bo Han
Jingren Zhou
Hongxia Yang
253
21
0
07 Jul 2022
Improving Data-driven Heterogeneous Treatment Effect Estimation Under Structure Uncertainty
Knowledge Discovery and Data Mining (KDD), 2022
Christopher Tran
Elena Zheleva
CML
232
4
0
25 Jun 2022
Interpretable Deep Causal Learning for Moderation Effects
A. Caron
G. Baio
I. Manolopoulou
CML
OOD
214
2
0
21 Jun 2022
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
Neural Information Processing Systems (NeurIPS), 2022
Jonathan Crabbé
Alicia Curth
Ioana Bica
M. Schaar
CML
278
22
0
16 Jun 2022
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
International Conference on Machine Learning (ICML), 2022
Nabeel Seedat
F. Imrie
Alexis Bellot
Zhaozhi Qian
M. Schaar
OOD
CML
200
64
0
16 Jun 2022
Adversarial Counterfactual Environment Model Learning
Neural Information Processing Systems (NeurIPS), 2023
Xiong-Hui Chen
Yang Yu
Zhenghong Zhu
Zhihua Yu
Zhen-Yu Chen
...
Yinan Wu
Hongqiu Wu
Rongjun Qin
Rui Ding
Fangsheng Huang
CML
OffRL
218
17
0
10 Jun 2022
Is More Data All You Need? A Causal Exploration
Athanasios Vlontzos
Hadrien Reynaud
Bernhard Kainz
CML
182
2
0
06 Jun 2022
Estimating counterfactual treatment outcomes over time in complex multiagent scenarios
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022
Keisuke Fujii
Koh Takeuchi
Atsushi Kuribayashi
Naoya Takeishi
Yoshinobu Kawahara
K. Takeda
CML
455
21
0
04 Jun 2022
Learning Disentangled Representations for Counterfactual Regression via Mutual Information Minimization
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2022
Min Cheng
Xinru Liao
Quanlian Liu
Bin Ma
Jian Xu
Bo Zheng
CML
156
30
0
02 Jun 2022
Feature Selection for Discovering Distributional Treatment Effect Modifiers
Conference on Uncertainty in Artificial Intelligence (UAI), 2022
Yoichi Chikahara
M. Yamada
H. Kashima
CML
391
7
0
01 Jun 2022
Comparison of meta-learners for estimating multi-valued treatment heterogeneous effects
International Conference on Machine Learning (ICML), 2022
Naoufal Acharki
Ramiro Lugo
A. Bertoncello
Josselin Garnier
CML
247
16
0
29 May 2022
Generalization bounds and algorithms for estimating conditional average treatment effect of dosage
Alexis Bellot
Anish Dhir
G. Prando
CML
184
12
0
29 May 2022
An improved neural network model for treatment effect estimation
Artificial Intelligence Applications and Innovations (AIAI), 2022
Niki Kiriakidou
Christos Diou
CML
168
3
0
23 May 2022
Robust and Agnostic Learning of Conditional Distributional Treatment Effects
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Nathan Kallus
Miruna Oprescu
OOD
CML
383
16
0
23 May 2022
Neuroevolutionary Feature Representations for Causal Inference
International Conference on Conceptual Structures (ICCS), 2022
Michael C. Burkhart
Gabriel Ruiz
CML
OOD
95
2
0
21 May 2022
Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes
Knowledge Discovery and Data Mining (KDD), 2022
Changchang Yin
Ruoqi Liu
Jeffrey Caterino
Ping Zhang
OffRL
217
8
0
19 May 2022
Causal Transformer for Estimating Counterfactual Outcomes
International Conference on Machine Learning (ICML), 2022
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
273
130
0
14 Apr 2022
Deep Multi-Modal Structural Equations For Causal Effect Estimation With Unstructured Proxies
Neural Information Processing Systems (NeurIPS), 2022
Shachi Deshpande
Kaiwen Wang
Dhruv Sreenivas
Zheng Li
Volodymyr Kuleshov
CML
SyDa
355
13
0
18 Mar 2022
Undersmoothing Causal Estimators with Generative Trees
IEEE Access (IEEE Access), 2022
Damian Machlanski
Spyridon Samothrakis
Paul Clarke
CML
305
1
0
16 Mar 2022
Multi-Task Adversarial Learning for Treatment Effect Estimation in Basket Trials
ACM Conference on Health, Inference, and Learning (ACM CHIL), 2022
Zhixuan Chu
S. Rathbun
Sheng Li
CML
159
10
0
10 Mar 2022
Covariate-Balancing-Aware Interpretable Deep Learning models for Treatment Effect Estimation
Statistics in Biosciences (Stat Biosci), 2022
Kan Chen
Qishuo Yin
Q. Long
CML
281
7
0
07 Mar 2022
Estimating Conditional Average Treatment Effects with Missing Treatment Information
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Milan Kuzmanovic
Tobias Hatt
Stefan Feuerriegel
CML
266
7
0
02 Mar 2022
Neural Score Matching for High-Dimensional Causal Inference
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Oscar Clivio
Fabian Falck
B. Lehmann
George Deligiannidis
Chris Holmes
CML
216
9
0
01 Mar 2022
Estimating causal effects with optimization-based methods: A review and empirical comparison
European Journal of Operational Research (EJOR), 2022
Martin Cousineau
V. Verter
Susan Murphy
J. Pineau
CML
170
11
0
28 Feb 2022
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
284
36
0
25 Feb 2022
Ensemble Method for Estimating Individualized Treatment Effects
K. Han
Hanghao Wu
CML
FedML
125
5
0
25 Feb 2022
Learning Infomax and Domain-Independent Representations for Causal Effect Inference with Real-World Data
SDM (SDM), 2022
Zhixuan Chu
S. Rathbun
Sheng Li
CML
OOD
128
15
0
22 Feb 2022
Diffusion Causal Models for Counterfactual Estimation
CLEaR (CLEaR), 2022
Pedro Sanchez
Sotirios A. Tsaftaris
DiffM
BDL
299
97
0
21 Feb 2022
Hierarchical Interpretation of Neural Text Classification
Computational Linguistics (CL), 2022
Hanqi Yan
Lin Gui
Yulan He
324
16
0
20 Feb 2022
Benign-Overfitting in Conditional Average Treatment Effect Prediction with Linear Regression
Masahiro Kato
Masaaki Imaizumi
CML
OOD
187
1
0
10 Feb 2022
To Impute or not to Impute? Missing Data in Treatment Effect Estimation
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Jeroen Berrevoets
F. Imrie
T. Kyono
James Jordon
M. Schaar
309
20
0
04 Feb 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
376
33
0
02 Feb 2022
Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance
Gabriel Okasa
CML
205
12
0
30 Jan 2022
A Causal Lens for Controllable Text Generation
Neural Information Processing Systems (NeurIPS), 2022
Zhiting Hu
Erran L. Li
224
72
0
22 Jan 2022
Individual Treatment Effect Estimation Through Controlled Neural Network Training in Two Stages
Naveen Nair
Karthik S. Gurumoorthy
Dinesh Mandalapu
CML
122
4
0
21 Jan 2022
DRTCI: Learning Disentangled Representations for Temporal Causal Inference
Garima Gupta
Lovekesh Vig
Gautam M. Shroff
BDL
OOD
CML
80
0
0
20 Jan 2022
Efficiently Disentangle Causal Representations
Yuanpeng Li
Joel Hestness
Mohamed Elhoseiny
Bo Pan
Kenneth Church
OOD
CML
79
1
0
06 Jan 2022
BITES: Balanced Individual Treatment Effect for Survival data
Stefan Schrod
Andreas Schäfer
S. Solbrig
R. Lohmayer
W. Gronwald
P. Oefner
T. Beissbarth
Rainer Spang
H. Zacharias
Michael Altenbuchinger
CML
128
25
0
05 Jan 2022
Deep Treatment-Adaptive Network for Causal Inference
The VLDB journal (VLDBJ), 2021
Qian Li
Zhichao Wang
Shaowu Liu
Gang Li
Guandong Xu
CML
BDL
OOD
123
13
0
27 Dec 2021
CausalMTA: Eliminating the User Confounding Bias for Causal Multi-touch Attribution
Knowledge Discovery and Data Mining (KDD), 2021
Di Yao
Chang Gong
Lei Zhang
Sheng Chen
Jingping Bi
CML
182
17
0
21 Dec 2021
Causal Knowledge Guided Societal Event Forecasting
Songgaojun Deng
Huzefa Rangwala
Yue Ning
AI4TS
139
3
0
10 Dec 2021
Enhancing Counterfactual Classification via Self-Training
Ruijiang Gao
Max Biggs
Wei-Ju Sun
Ligong Han
CML
OffRL
284
6
0
08 Dec 2021
Non parametric estimation of causal populations in a counterfactual scenario
Céline Beji
Florian Yger
Jamal Atif
CML
OOD
126
0
0
08 Dec 2021
Disentangled Counterfactual Recurrent Networks for Treatment Effect Inference over Time
Jeroen Berrevoets
Alicia Curth
Ioana Bica
E. McKinney
M. Schaar
CML
BDL
AI4CE
206
18
0
07 Dec 2021
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies
Milan Kuzmanovic
Tobias Hatt
Stefan Feuerriegel
CML
213
22
0
06 Dec 2021
AI Assurance using Causal Inference: Application to Public Policy
A. Svetovidov
Abdul Rahman
Feras A. Batarseh
CML
94
2
0
01 Dec 2021
Loss Functions for Discrete Contextual Pricing with Observational Data
Max Biggs
Ruijiang Gao
Wei-Ju Sun
387
10
0
18 Nov 2021
Causal Effect Variational Autoencoder with Uniform Treatment
Daniel Jiwoong Im
Kyunghyun Cho
N. Razavian
OOD
CML
BDL
194
10
0
16 Nov 2021
Variational Auto-Encoder Architectures that Excel at Causal Inference
Negar Hassanpour
Russell Greiner
BDL
CML
105
3
0
11 Nov 2021
Interpretable Personalized Experimentation
Knowledge Discovery and Data Mining (KDD), 2021
Han Wu
S. Tan
Weiwei Li
Mia Garrard
Adam Obeng
Drew Dimmery
Shaun Singh
Hanson Wang
Daniel R. Jiang
E. Bakshy
189
7
0
05 Nov 2021
Previous
1
2
3
4
5
6
7
8
9
Next