Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
1605.03661
Cited By
v1
v2
v3 (latest)
Learning Representations for Counterfactual Inference
12 May 2016
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Representations for Counterfactual Inference"
50 / 414 papers shown
Title
Estimating Individual Treatment Effects with Time-Varying Confounders
Ruoqi Liu
Changchang Yin
Ping Zhang
CML
157
29
0
27 Aug 2020
Hi-CI: Deep Causal Inference in High Dimensions
Ankit Sharma
Garima Gupta
Ranjitha Prasad
Arnab Chatterjee
Lovekesh Vig
Gautam M. Shroff
BDL
CML
141
4
0
22 Aug 2020
Long-Term Effect Estimation with Surrogate Representation
Lu Cheng
Ruocheng Guo
Huan Liu
CML
96
20
0
19 Aug 2020
Estimating Causal Effects with the Neural Autoregressive Density Estimator
Sergio Garrido
S. Borysov
Jeppe Rich
Francisco Câmara Pereira
CML
112
8
0
17 Aug 2020
On Learning Language-Invariant Representations for Universal Machine Translation
Hao Zhao
Junjie Hu
Andrej Risteski
119
8
0
11 Aug 2020
A Causal Lens for Peeking into Black Box Predictive Models: Predictive Model Interpretation via Causal Attribution
A. Khademi
Vasant Honavar
CML
78
9
0
01 Aug 2020
An Interpretable Probabilistic Approach for Demystifying Black-box Predictive Models
Catarina Moreira
Yu-Liang Chou
M. Velmurugan
Chun Ouyang
Prerna Agarwal
P. Bruza
147
60
0
21 Jul 2020
Causal Inference using Gaussian Processes with Structured Latent Confounders
Sam Witty
Kenta Takatsu
David D. Jensen
Vikash K. Mansinghka
CML
173
19
0
14 Jul 2020
A unified survey of treatment effect heterogeneity modeling and uplift modeling
Weijia Zhang
Jiuyong Li
Lin Liu
CML
158
65
0
14 Jul 2020
On Linear Identifiability of Learned Representations
Geoffrey Roeder
Luke Metz
Diederik P. Kingma
CML
174
88
0
01 Jul 2020
Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models
Andrew Jesson
Sören Mindermann
Uri Shalit
Y. Gal
CML
156
74
0
01 Jul 2020
Adversarial representation learning for synthetic replacement of private attributes
John Martinsson
Edvin Listo Zec
D. Gillblad
Olof Mogren
PICV
128
8
0
14 Jun 2020
Learning Decomposed Representation for Counterfactual Inference
Anpeng Wu
Kun Kuang
Junkun Yuan
Bo Li
Jianrong Tao
Qiang Zhu
Yueting Zhuang
Leilei Gan
CML
116
22
0
12 Jun 2020
Regret Minimization for Causal Inference on Large Treatment Space
Akira Tanimoto
Tomoya Sakai
Takashi Takenouchi
H. Kashima
CML
95
10
0
10 Jun 2020
Causality and Batch Reinforcement Learning: Complementary Approaches To Planning In Unknown Domains
James Bannon
Bradford T. Windsor
Wenbo Song
Tao Li
CML
OOD
OffRL
99
22
0
03 Jun 2020
CausaLM: Causal Model Explanation Through Counterfactual Language Models
Amir Feder
Nadav Oved
Uri Shalit
Roi Reichart
CML
LRM
267
168
0
27 May 2020
Counterfactual Propagation for Semi-Supervised Individual Treatment Effect Estimation
Shonosuke Harada
H. Kashima
CML
47
3
0
11 May 2020
Text and Causal Inference: A Review of Using Text to Remove Confounding from Causal Estimates
Katherine A. Keith
David D. Jensen
Brendan O'Connor
CML
131
120
0
01 May 2020
MultiMBNN: Matched and Balanced Causal Inference with Neural Networks
Ankit Sharma
Garima Gupta
Ranjitha Prasad
Arnab Chatterjee
Lovekesh Vig
Gautam M. Shroff
CML
74
7
0
28 Apr 2020
Learning Continuous Treatment Policy and Bipartite Embeddings for Matching with Heterogeneous Causal Effects
Will Y. Zou
S. Shyam
Michael Mui
Mingshi Wang
Jan Pedersen
Zoubin Ghahramani
CML
74
2
0
21 Apr 2020
Causality-aware counterfactual confounding adjustment for feature representations learned by deep models
E. C. Neto
AI4CE
OOD
BDL
CML
86
2
0
20 Apr 2020
Estimating Individual Treatment Effects through Causal Populations Identification
Céline Beji
Michaël Bon
Florian Yger
Jamal Atif
CML
52
3
0
10 Apr 2020
Learning Latent Causal Structures with a Redundant Input Neural Network
Jonathan D. Young
Bryan Andrews
G. Cooper
Xinghua Lu
CML
53
8
0
29 Mar 2020
ParKCa: Causal Inference with Partially Known Causes
Raquel Y. S. Aoki
Martin Ester
CML
151
6
0
17 Mar 2020
Optimizing Medical Treatment for Sepsis in Intensive Care: from Reinforcement Learning to Pre-Trial Evaluation
Luchen Li
I. Albert-Smet
Aldo A. Faisal
OffRL
89
11
0
13 Mar 2020
Adversarial Machine Learning: Bayesian Perspectives
D. Insua
Roi Naveiro
Víctor Gallego
Jason Poulos
AAML
88
29
0
07 Mar 2020
Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks
Ioana Bica
James Jordon
M. Schaar
CML
162
109
0
27 Feb 2020
Off-Policy Evaluation and Learning for External Validity under a Covariate Shift
Masahiro Kato
Masatoshi Uehara
Shota Yasui
OffRL
142
54
0
26 Feb 2020
MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent Variable Models
Imke Mayer
Julie Josse
Félix Raimundo
Jean-Philippe Vert
CML
96
12
0
25 Feb 2020
Causal Inference under Networked Interference and Intervention Policy Enhancement
Yunpu Ma
Volker Tresp
CML
104
43
0
20 Feb 2020
Estimating Counterfactual Treatment Outcomes over Time Through Adversarially Balanced Representations
Ioana Bica
Ahmed Alaa
James Jordon
M. Schaar
BDL
CML
126
193
0
10 Feb 2020
A Survey on Causal Inference
Liuyi Yao
Zhixuan Chu
Sheng Li
Yaliang Li
Jing Gao
Aidong Zhang
CML
180
549
0
05 Feb 2020
Treatment effect estimation with disentangled latent factors
Weijia Zhang
Lin Liu
Jiuyong Li
CML
156
95
0
29 Jan 2020
Causal query in observational data with hidden variables
Debo Cheng
Jiuyong Li
Lin Liu
Jixue Liu
Kui Yu
T. Le
CML
118
11
0
28 Jan 2020
On the Fairness of Randomized Trials for Recommendation with Heterogeneous Demographics and Beyond
Zifeng Wang
Xi Chen
Rui Wen
Shao-Lun Huang
176
1
0
25 Jan 2020
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects
Fredrik D. Johansson
Uri Shalit
Nathan Kallus
David Sontag
CML
OOD
228
105
0
21 Jan 2020
The Counterfactual
χ
χ
χ
-GAN
A. Averitt
Natnicha Vanitchanant
Rajesh Ranganath
A. Perotte
CML
BDL
68
8
0
09 Jan 2020
Artificial Intelligence for Social Good: A Survey
Zheyuan Ryan Shi
Claire Wang
Fei Fang
AI4TS
171
87
0
07 Jan 2020
Counterfactual Evaluation of Treatment Assignment Functions with Networked Observational Data
Ruocheng Guo
Jundong Li
Huan Liu
CML
OffRL
122
21
0
22 Dec 2019
Reducing Selection Bias in Counterfactual Reasoning for Individual Treatment Effects Estimation
Zichen Zhang
Qingfeng Lan
Lei Ding
Yue Wang
Negar Hassanpour
Russell Greiner
BDL
CML
89
9
0
19 Dec 2019
MetaCI: Meta-Learning for Causal Inference in a Heterogeneous Population
Ankit Sharma
Garima Gupta
Ranjitha Prasad
Arnab Chatterjee
Lovekesh Vig
Gautam M. Shroff
OOD
150
12
0
09 Dec 2019
Triply Robust Off-Policy Evaluation
Anqi Liu
Hao Liu
Anima Anandkumar
Yisong Yue
OffRL
111
11
0
13 Nov 2019
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming
Yura N. Perov
L. Graham
Kostis Gourgoulias
Jonathan G. Richens
Ciarán M. Gilligan-Lee
Adam Baker
Saurabh Johri
LRM
146
17
0
17 Oct 2019
Optimising Individual-Treatment-Effect Using Bandits
Jeroen Berrevoets
Sam Verboven
Wouter Verbeke
CML
32
3
0
16 Oct 2019
Estimation of Bounds on Potential Outcomes For Decision Making
Maggie Makar
Fredrik D. Johansson
John Guttag
David Sontag
67
1
0
10 Oct 2019
Conditional out-of-sample generation for unpaired data using trVAE
M. Lotfollahi
Mohsen Naghipourfar
Fabian J. Theis
F. A. Wolf
GAN
ViT
DRL
165
20
0
04 Oct 2019
Representation Learning for Electronic Health Records
W. Weng
Peter Szolovits
94
20
0
19 Sep 2019
Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models
Yuta Saito
Shota Yasui
OOD
CML
66
8
0
11 Sep 2019
Reward Tampering Problems and Solutions in Reinforcement Learning: A Causal Influence Diagram Perspective
Tom Everitt
Marcus Hutter
Ramana Kumar
Victoria Krakovna
244
107
0
13 Aug 2019
Quantifying Error in the Presence of Confounders for Causal Inference
Rathin Desai
Amit Sharma
CML
35
0
0
10 Jul 2019
Previous
1
2
3
4
5
6
7
8
9
Next