Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1610.01145
Cited By
v1
v2
v3 (latest)
Error bounds for approximations with deep ReLU networks
3 October 2016
Dmitry Yarotsky
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Error bounds for approximations with deep ReLU networks"
50 / 633 papers shown
Estimating Heterogeneous Treatment Effects by Combining Weak Instruments and Observational Data
Miruna Oprescu
Nathan Kallus
CML
233
1
0
10 Jun 2024
A Low Rank Neural Representation of Entropy Solutions
Donsub Rim
Gerrit Welper
323
1
0
09 Jun 2024
Deep Neural Networks are Adaptive to Function Regularity and Data Distribution in Approximation and Estimation
Hao Liu
Jiahui Cheng
Wenjing Liao
178
1
0
08 Jun 2024
Posterior and variational inference for deep neural networks with heavy-tailed weights
Ismael Castillo
Paul Egels
BDL
336
10
0
05 Jun 2024
Anomaly Detection in Dynamic Graphs: A Comprehensive Survey
Ocheme Anthony Ekle
William Eberle
AI4TS
327
39
0
31 May 2024
From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems
Jianliang He
Siyu Chen
Fengzhuo Zhang
Zhuoran Yang
LM&Ro
LLMAG
303
8
0
30 May 2024
Lower Bounds on the Expressivity of Recurrent Neural Language Models
Anej Svete
Franz Nowak
Anisha Mohamed Sahabdeen
Robert Bamler
265
0
0
29 May 2024
How many samples are needed to train a deep neural network?
Pegah Golestaneh
Mahsa Taheri
Johannes Lederer
242
7
0
26 May 2024
Deep Ridgelet Transform and Unified Universality Theorem for Deep and Shallow Joint-Group-Equivariant Machines
Sho Sonoda
Yuka Hashimoto
Isao Ishikawa
Masahiro Ikeda
353
0
0
22 May 2024
Model Free Prediction with Uncertainty Assessment
Yuling Jiao
Lican Kang
Jin Liu
Heng Peng
Heng Zuo
DiffM
357
2
0
21 May 2024
Approximation and Gradient Descent Training with Neural Networks
G. Welper
232
2
0
19 May 2024
Geometry-Aware Instrumental Variable Regression
International Conference on Machine Learning (ICML), 2024
Heiner Kremer
Bernhard Schölkopf
286
0
0
19 May 2024
Error Analysis of Three-Layer Neural Network Trained with PGD for Deep Ritz Method
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2024
Yuling Jiao
Yanming Lai
Yang Wang
AI4CE
177
1
0
19 May 2024
Approximation Error and Complexity Bounds for ReLU Networks on Low-Regular Function Spaces
Owen Davis
Gianluca Geraci
Mohammad Motamed
185
2
0
10 May 2024
Generalization analysis with deep ReLU networks for metric and similarity learning
Junyu Zhou
Puyu Wang
Ding-Xuan Zhou
212
3
0
10 May 2024
Towards Accurate and Robust Architectures via Neural Architecture Search
Computer Vision and Pattern Recognition (CVPR), 2024
Yuwei Ou
Yuqi Feng
Yanan Sun
AAML
196
9
0
09 May 2024
Generative adversarial learning with optimal input dimension and its adaptive generator architecture
Zhiyao Tan
Ling Zhou
Huazhen Lin
GAN
228
2
0
06 May 2024
No One-Size-Fits-All Neurons: Task-based Neurons for Artificial Neural Networks
Feng-Lei Fan
Meng Wang
Hang Dong
Jianwei Ma
Tieyong Zeng
190
2
0
03 May 2024
KAN: Kolmogorov-Arnold Networks
Ziming Liu
Yixuan Wang
Sachin Vaidya
Fabian Ruehle
James Halverson
Marin Soljacic
Thomas Y. Hou
Max Tegmark
974
1,236
0
30 Apr 2024
Learning smooth functions in high dimensions: from sparse polynomials to deep neural networks
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
214
8
0
04 Apr 2024
On the rates of convergence for learning with convolutional neural networks
Yunfei Yang
Han Feng
Ding-Xuan Zhou
406
4
0
25 Mar 2024
A Wasserstein perspective of Vanilla GANs
Neural Networks (NN), 2024
Lea Kunkel
Mathias Trabs
184
14
0
22 Mar 2024
Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation
Janina Enrica Schutte
Martin Eigel
AI4CE
200
2
0
19 Mar 2024
Two-hidden-layer ReLU neural networks and finite elements
Pengzhan Jin
309
1
0
09 Mar 2024
Applied Causal Inference Powered by ML and AI
Victor Chernozhukov
Christian Hansen
Nathan Kallus
Martin Spindler
Vasilis Syrgkanis
CML
329
48
0
04 Mar 2024
Exponential Expressivity of ReLU
k
^k
k
Neural Networks on Gevrey Classes with Point Singularities
J. Opschoor
Christoph Schwab
143
5
0
04 Mar 2024
Operator Learning: Algorithms and Analysis
Nikola B. Kovachki
S. Lanthaler
Andrew M. Stuart
458
67
0
24 Feb 2024
A Statistical Analysis of Wasserstein Autoencoders for Intrinsically Low-dimensional Data
Saptarshi Chakraborty
Peter L. Bartlett
181
3
0
24 Feb 2024
On Minimal Depth in Neural Networks
J. L. Valerdi
256
10
0
23 Feb 2024
Depth Separation in Norm-Bounded Infinite-Width Neural Networks
Suzanna Parkinson
Greg Ongie
Rebecca Willett
Ohad Shamir
Nathan Srebro
MDE
244
2
0
13 Feb 2024
Score-based generative models break the curse of dimensionality in learning a family of sub-Gaussian probability distributions
Frank Cole
Yuxuan Zhao
DiffM
331
8
0
12 Feb 2024
Disparate Impact on Group Accuracy of Linearization for Private Inference
International Conference on Machine Learning (ICML), 2024
Saswat Das
Marco Romanelli
Ferdinando Fioretto
FedML
218
4
0
06 Feb 2024
Partially Stochastic Infinitely Deep Bayesian Neural Networks
International Conference on Machine Learning (ICML), 2024
Sergio Calvo-Ordoñez
Matthieu Meunier
Francesco Piatti
Yuantao Shi
BDL
439
6
0
05 Feb 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
510
2
0
05 Feb 2024
A practical existence theorem for reduced order models based on convolutional autoencoders
N. R. Franco
Simone Brugiapaglia
AI4CE
310
10
0
01 Feb 2024
Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss
International Conference on Machine Learning (ICML), 2024
Yahong Yang
Juncai He
AI4CE
486
13
0
31 Jan 2024
At the junction between deep learning and statistics of extremes: formalizing the landslide hazard definition
Journal of Geophysical Research (JGR), 2024
Ashok Dahal
Raphael Huser
Luigi Lombardo
81
16
0
25 Jan 2024
Can overfitted deep neural networks in adversarial training generalize? -- An approximation viewpoint
Zhongjie Shi
Fanghui Liu
Yuan Cao
Johan A. K. Suykens
236
0
0
24 Jan 2024
Extracting Formulae in Many-Valued Logic from Deep Neural Networks
IEEE Transactions on Signal Processing (IEEE TSP), 2024
Yani Zhang
Helmut Bölcskei
177
0
0
22 Jan 2024
Generalization Error Guaranteed Auto-Encoder-Based Nonlinear Model Reduction for Operator Learning
Hao Liu
Biraj Dahal
Rongjie Lai
Wenjing Liao
AI4CE
231
10
0
19 Jan 2024
Approximation of Solution Operators for High-dimensional PDEs
Nathan Gaby
Xiaojing Ye
236
0
0
18 Jan 2024
Mathematical Algorithm Design for Deep Learning under Societal and Judicial Constraints: The Algorithmic Transparency Requirement
Holger Boche
Adalbert Fono
Gitta Kutyniok
FaML
351
5
0
18 Jan 2024
A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models
Annual Review of Statistics and Its Application (ARSIA), 2024
Namjoon Suh
Guang Cheng
MedIm
354
18
0
14 Jan 2024
Error estimation for physics-informed neural networks with implicit Runge-Kutta methods
Jochen Stiasny
Spyros Chatzivasileiadis
PINN
164
2
0
10 Jan 2024
Optimization Over Trained Neural Networks: Taking a Relaxing Walk
Jiatai Tong
Junyang Cai
Thiago Serra
379
14
0
07 Jan 2024
Nonlinear functional regression by functional deep neural network with kernel embedding
Zhongjie Shi
Jun Fan
Linhao Song
Ding-Xuan Zhou
Johan A. K. Suykens
736
6
0
05 Jan 2024
Double-well Net for Image Segmentation
Multiscale Modeling & simulation (MMS), 2023
Haotian Liu
Jun Liu
Raymond H. F. Chan
Xue-Cheng Tai
235
10
0
31 Dec 2023
Density estimation using the perceptron
P. R. Gerber
Tianze Jiang
Yury Polyanskiy
Rui Sun
286
0
0
29 Dec 2023
Computational Tradeoffs of Optimization-Based Bound Tightening in ReLU Networks
Fabian Badilla
Marcos Goycoolea
Gonzalo Muñoz
Thiago Serra
308
8
0
27 Dec 2023
Expressivity and Approximation Properties of Deep Neural Networks with ReLU
k
^k
k
Activation
Juncai He
Tong Mao
Jinchao Xu
321
7
0
27 Dec 2023
Previous
1
2
3
4
5
6
...
11
12
13
Next