ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.03530
  4. Cited By
Understanding deep learning requires rethinking generalization

Understanding deep learning requires rethinking generalization

10 November 2016
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
    HAI
ArXivPDFHTML

Papers citing "Understanding deep learning requires rethinking generalization"

50 / 1,075 papers shown
Title
The Low-Rank Simplicity Bias in Deep Networks
The Low-Rank Simplicity Bias in Deep Networks
Minyoung Huh
H. Mobahi
Richard Y. Zhang
Brian Cheung
Pulkit Agrawal
Phillip Isola
35
110
0
18 Mar 2021
Gradient Projection Memory for Continual Learning
Gradient Projection Memory for Continual Learning
Gobinda Saha
Isha Garg
Kaushik Roy
VLM
CLL
47
270
0
17 Mar 2021
Triplet-Watershed for Hyperspectral Image Classification
Triplet-Watershed for Hyperspectral Image Classification
Aditya Challa
Sravan Danda
B. Sagar
Laurent Najman
26
5
0
17 Mar 2021
Is it enough to optimize CNN architectures on ImageNet?
Is it enough to optimize CNN architectures on ImageNet?
Lukas Tuggener
Jürgen Schmidhuber
Thilo Stadelmann
33
23
0
16 Mar 2021
Detecting Human-Object Interaction via Fabricated Compositional Learning
Detecting Human-Object Interaction via Fabricated Compositional Learning
Zhi Hou
B. Yu
Yu Qiao
Xiaojiang Peng
Dacheng Tao
38
96
0
15 Mar 2021
Membership Inference Attacks on Machine Learning: A Survey
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
40
412
0
14 Mar 2021
Intraclass clustering: an implicit learning ability that regularizes
  DNNs
Intraclass clustering: an implicit learning ability that regularizes DNNs
Simon Carbonnelle
Christophe De Vleeschouwer
65
8
0
11 Mar 2021
Fair Mixup: Fairness via Interpolation
Fair Mixup: Fairness via Interpolation
Ching-Yao Chuang
Youssef Mroueh
21
138
0
11 Mar 2021
Reframing Neural Networks: Deep Structure in Overcomplete
  Representations
Reframing Neural Networks: Deep Structure in Overcomplete Representations
Calvin Murdock
George Cazenavette
Simon Lucey
BDL
41
4
0
10 Mar 2021
LongReMix: Robust Learning with High Confidence Samples in a Noisy Label
  Environment
LongReMix: Robust Learning with High Confidence Samples in a Noisy Label Environment
F. Cordeiro
Ragav Sachdeva
Vasileios Belagiannis
Ian Reid
G. Carneiro
NoLa
21
77
0
06 Mar 2021
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test
  Accuracy
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy
Lucas Liebenwein
Cenk Baykal
Brandon Carter
David K Gifford
Daniela Rus
AAML
42
71
0
04 Mar 2021
FSDR: Frequency Space Domain Randomization for Domain Generalization
FSDR: Frequency Space Domain Randomization for Domain Generalization
Jiaxing Huang
Dayan Guan
Aoran Xiao
Shijian Lu
44
218
0
03 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
36
271
0
02 Mar 2021
Posterior Meta-Replay for Continual Learning
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
55
0
01 Mar 2021
DST: Data Selection and joint Training for Learning with Noisy Labels
DST: Data Selection and joint Training for Learning with Noisy Labels
Yi Wei
Xue Mei
Xin Liu
Pengxiang Xu
NoLa
27
3
0
01 Mar 2021
Neuron Coverage-Guided Domain Generalization
Neuron Coverage-Guided Domain Generalization
Chris Xing Tian
Haoliang Li
Xiaofei Xie
Yang Liu
Shiqi Wang
32
35
0
27 Feb 2021
FINE Samples for Learning with Noisy Labels
FINE Samples for Learning with Noisy Labels
Taehyeon Kim
Jongwoo Ko
Sangwook Cho
J. Choi
Se-Young Yun
NoLa
38
103
0
23 Feb 2021
SVRG Meets AdaGrad: Painless Variance Reduction
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
23
18
0
18 Feb 2021
Dissecting Supervised Contrastive Learning
Dissecting Supervised Contrastive Learning
Florian Graf
Christoph Hofer
Marc Niethammer
Roland Kwitt
SSL
117
70
0
17 Feb 2021
Evaluating Multi-label Classifiers with Noisy Labels
Evaluating Multi-label Classifiers with Noisy Labels
Wenting Zhao
Carla P. Gomes
NoLa
74
14
0
16 Feb 2021
Learning curves of generic features maps for realistic datasets with a
  teacher-student model
Learning curves of generic features maps for realistic datasets with a teacher-student model
Bruno Loureiro
Cédric Gerbelot
Hugo Cui
Sebastian Goldt
Florent Krzakala
M. Mézard
Lenka Zdeborová
37
136
0
16 Feb 2021
Training Larger Networks for Deep Reinforcement Learning
Training Larger Networks for Deep Reinforcement Learning
Keita Ota
Devesh K. Jha
Asako Kanezaki
OffRL
37
39
0
16 Feb 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
43
45
0
15 Feb 2021
Learning by Turning: Neural Architecture Aware Optimisation
Learning by Turning: Neural Architecture Aware Optimisation
Yang Liu
Jeremy Bernstein
M. Meister
Yisong Yue
ODL
48
26
0
14 Feb 2021
Technical Challenges for Training Fair Neural Networks
Technical Challenges for Training Fair Neural Networks
Valeriia Cherepanova
V. Nanda
Micah Goldblum
John P. Dickerson
Tom Goldstein
FaML
25
22
0
12 Feb 2021
Understanding the Interaction of Adversarial Training with Noisy Labels
Understanding the Interaction of Adversarial Training with Noisy Labels
Jianing Zhu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Hongxia Yang
Mohan Kankanhalli
Masashi Sugiyama
AAML
27
27
0
06 Feb 2021
On the Reproducibility of Neural Network Predictions
On the Reproducibility of Neural Network Predictions
Srinadh Bhojanapalli
Kimberly Wilber
Andreas Veit
A. S. Rawat
Seungyeon Kim
A. Menon
Sanjiv Kumar
29
35
0
05 Feb 2021
Provably End-to-end Label-Noise Learning without Anchor Points
Provably End-to-end Label-Noise Learning without Anchor Points
Xuefeng Li
Tongliang Liu
Bo Han
Gang Niu
Masashi Sugiyama
NoLa
133
121
0
04 Feb 2021
SGD Generalizes Better Than GD (And Regularization Doesn't Help)
SGD Generalizes Better Than GD (And Regularization Doesn't Help)
I Zaghloul Amir
Tomer Koren
Roi Livni
37
46
0
01 Feb 2021
A Convergence Theory Towards Practical Over-parameterized Deep Neural
  Networks
A Convergence Theory Towards Practical Over-parameterized Deep Neural Networks
Asaf Noy
Yi Tian Xu
Y. Aflalo
Lihi Zelnik-Manor
Rong Jin
46
3
0
12 Jan 2021
Adversary Instantiation: Lower Bounds for Differentially Private Machine
  Learning
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning
Milad Nasr
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Nicholas Carlini
MIACV
FedML
82
216
0
11 Jan 2021
Provable Generalization of SGD-trained Neural Networks of Any Width in
  the Presence of Adversarial Label Noise
Provable Generalization of SGD-trained Neural Networks of Any Width in the Presence of Adversarial Label Noise
Spencer Frei
Yuan Cao
Quanquan Gu
FedML
MLT
70
19
0
04 Jan 2021
A Second-Order Approach to Learning with Instance-Dependent Label Noise
A Second-Order Approach to Learning with Instance-Dependent Label Noise
Zhaowei Zhu
Tongliang Liu
Yang Liu
NoLa
22
127
0
22 Dec 2020
Neural Joint Entropy Estimation
Neural Joint Entropy Estimation
Yuval Shalev
Amichai Painsky
I. Ben-Gal
34
8
0
21 Dec 2020
Multi-Label Noise Robust Collaborative Learning for Remote Sensing Image
  Classification
Multi-Label Noise Robust Collaborative Learning for Remote Sensing Image Classification
A. Aksoy
Mahdyar Ravanbakhsh
Begüm Demir
35
24
0
19 Dec 2020
Attentional-Biased Stochastic Gradient Descent
Attentional-Biased Stochastic Gradient Descent
Q. Qi
Yi Tian Xu
Rong Jin
W. Yin
Tianbao Yang
ODL
31
12
0
13 Dec 2020
Beyond Class-Conditional Assumption: A Primary Attempt to Combat
  Instance-Dependent Label Noise
Beyond Class-Conditional Assumption: A Primary Attempt to Combat Instance-Dependent Label Noise
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
45
123
0
10 Dec 2020
Annotation-efficient deep learning for automatic medical image
  segmentation
Annotation-efficient deep learning for automatic medical image segmentation
Shanshan Wang
Cheng Li
Rongpin Wang
Zaiyi Liu
Meiyun Wang
...
Xin Liu
Jie Chen
Hui-Chong Zhou
Ismail Ben Ayed
Hairong Zheng
VLM
MedIm
39
177
0
09 Dec 2020
A Topological Filter for Learning with Label Noise
A Topological Filter for Learning with Label Noise
Pengxiang Wu
Songzhu Zheng
Mayank Goswami
Dimitris N. Metaxas
Chao Chen
NoLa
30
112
0
09 Dec 2020
Multi-Objective Interpolation Training for Robustness to Label Noise
Multi-Objective Interpolation Training for Robustness to Label Noise
Diego Ortego
Eric Arazo
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
33
112
0
08 Dec 2020
Robustness of Accuracy Metric and its Inspirations in Learning with
  Noisy Labels
Robustness of Accuracy Metric and its Inspirations in Learning with Noisy Labels
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
103
34
0
08 Dec 2020
DiffPrune: Neural Network Pruning with Deterministic Approximate Binary
  Gates and $L_0$ Regularization
DiffPrune: Neural Network Pruning with Deterministic Approximate Binary Gates and L0L_0L0​ Regularization
Yaniv Shulman
46
3
0
07 Dec 2020
Privacy and Robustness in Federated Learning: Attacks and Defenses
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
357
0
07 Dec 2020
Cross-Layer Distillation with Semantic Calibration
Cross-Layer Distillation with Semantic Calibration
Defang Chen
Jian-Ping Mei
Yuan Zhang
Can Wang
Yan Feng
Chun-Yen Chen
FedML
45
288
0
06 Dec 2020
SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning
SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning
Zhuowei Wang
Jing Jiang
Bo Han
Lei Feng
Bo An
Gang Niu
Guodong Long
NoLa
33
17
0
02 Dec 2020
Every Model Learned by Gradient Descent Is Approximately a Kernel
  Machine
Every Model Learned by Gradient Descent Is Approximately a Kernel Machine
Pedro M. Domingos
MLT
29
71
0
30 Nov 2020
Overcoming Measurement Inconsistency in Deep Learning for Linear Inverse
  Problems: Applications in Medical Imaging
Overcoming Measurement Inconsistency in Deep Learning for Linear Inverse Problems: Applications in Medical Imaging
Marija Vella
João F. C. Mota
19
4
0
29 Nov 2020
Rethinking Generalization in American Sign Language Prediction for Edge
  Devices with Extremely Low Memory Footprint
Rethinking Generalization in American Sign Language Prediction for Edge Devices with Extremely Low Memory Footprint
A. Paul
P. Mohan
Stuti Sehgal
22
17
0
27 Nov 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
54
259
0
18 Nov 2020
Dynamic Hard Pruning of Neural Networks at the Edge of the Internet
Dynamic Hard Pruning of Neural Networks at the Edge of the Internet
Lorenzo Valerio
F. M. Nardini
A. Passarella
R. Perego
25
12
0
17 Nov 2020
Previous
123...91011...202122
Next