Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.03530
Cited By
Understanding deep learning requires rethinking generalization
10 November 2016
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding deep learning requires rethinking generalization"
50 / 1,102 papers shown
Title
Learning Diverse and Discriminative Representations via the Principle of Maximal Coding Rate Reduction
Yaodong Yu
Kwan Ho Ryan Chan
Chong You
Chaobing Song
Yi Ma
SSL
38
190
0
15 Jun 2020
Learning Bounds for Risk-sensitive Learning
Jaeho Lee
Sejun Park
Jinwoo Shin
25
46
0
15 Jun 2020
Towards Robust Pattern Recognition: A Review
Xu-Yao Zhang
Cheng-Lin Liu
C. Suen
OOD
HAI
26
103
0
12 Jun 2020
To Each Optimizer a Norm, To Each Norm its Generalization
Sharan Vaswani
Reza Babanezhad
Jose Gallego
Aaron Mishkin
Simon Lacoste-Julien
Nicolas Le Roux
26
8
0
11 Jun 2020
Meta Transition Adaptation for Robust Deep Learning with Noisy Labels
Jun Shu
Qian Zhao
Zengben Xu
Deyu Meng
NoLa
33
30
0
10 Jun 2020
Probably Approximately Correct Constrained Learning
Luiz F. O. Chamon
Alejandro Ribeiro
22
38
0
09 Jun 2020
Provable tradeoffs in adversarially robust classification
Yan Sun
Hamed Hassani
David Hong
Alexander Robey
23
53
0
09 Jun 2020
The Curious Case of Convex Neural Networks
S. Sivaprasad
Ankur Singh
Naresh Manwani
Vineet Gandhi
46
27
0
09 Jun 2020
Rethinking Importance Weighting for Deep Learning under Distribution Shift
Tongtong Fang
Nan Lu
Gang Niu
Masashi Sugiyama
33
137
0
08 Jun 2020
Weakly Supervised Vessel Segmentation in X-ray Angiograms by Self-Paced Learning from Noisy Labels with Suggestive Annotation
Jingyang Zhang
Guotai Wang
Hongzhi Xie
Shuyang Zhang
Ning Huang
Shaoting Zhang
Lixu Gu
35
41
0
27 May 2020
Data Separability for Neural Network Classifiers and the Development of a Separability Index
Shuyue Guan
Murray H. Loew
Hanseok Ko
11
3
0
27 May 2020
Is deeper better? It depends on locality of relevant features
Takashi Mori
Masahito Ueda
OOD
25
4
0
26 May 2020
Data Consistent CT Reconstruction from Insufficient Data with Learned Prior Images
Yixing Huang
Alexander Preuhs
M. Manhart
G. Lauritsch
Andreas Maier
MedIm
27
5
0
20 May 2020
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
56
149
0
16 May 2020
Generalization Bounds via Information Density and Conditional Information Density
Fredrik Hellström
G. Durisi
27
65
0
16 May 2020
Learning the gravitational force law and other analytic functions
Atish Agarwala
Abhimanyu Das
Rina Panigrahy
Qiuyi Zhang
MLT
16
0
0
15 May 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
24
155
0
13 May 2020
Ensembled sparse-input hierarchical networks for high-dimensional datasets
Jean Feng
N. Simon
19
4
0
11 May 2020
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
155
372
0
09 May 2020
DQI: Measuring Data Quality in NLP
Swaroop Mishra
Anjana Arunkumar
Bhavdeep Singh Sachdeva
Chris Bryan
Chitta Baral
38
30
0
02 May 2020
On the Benefits of Invariance in Neural Networks
Clare Lyle
Mark van der Wilk
Marta Z. Kwiatkowska
Y. Gal
Benjamin Bloem-Reddy
OOD
BDL
33
92
0
01 May 2020
CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization
Zijie J. Wang
Robert Turko
Omar Shaikh
Haekyu Park
Nilaksh Das
Fred Hohman
Minsuk Kahng
Duen Horng Chau
HAI
FAtt
35
240
0
30 Apr 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
55
371
0
30 Apr 2020
A Perspective on Deep Learning for Molecular Modeling and Simulations
Jun Zhang
Yao-Kun Lei
Zhen Zhang
Junhan Chang
Maodong Li
Xu Han
Lijiang Yang
Yue Yang
Y. Gao
AI4CE
42
8
0
25 Apr 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
51
172
0
23 Apr 2020
On the Compressive Power of Boolean Threshold Autoencoders
A. Melkman
Sini Guo
W. Ching
Pengyu Liu
Tatsuya Akutsu
AI4CE
16
3
0
21 Apr 2020
Unsupervised Person Re-identification via Multi-label Classification
Dongkai Wang
Shiliang Zhang
24
360
0
20 Apr 2020
OSLNet: Deep Small-Sample Classification with an Orthogonal Softmax Layer
Xiaoxu Li
Dongliang Chang
Zhanyu Ma
Zheng-Hua Tan
Jing-Hao Xue
Jie Cao
Jingyi Yu
Jun Guo
33
32
0
20 Apr 2020
How to Teach DNNs to Pay Attention to the Visual Modality in Speech Recognition
George Sterpu
Christian Saam
N. Harte
34
28
0
17 Apr 2020
Divergent Search for Few-Shot Image Classification
Jeremy Tan
Bernhard Kainz
12
0
0
16 Apr 2020
A function space analysis of finite neural networks with insights from sampling theory
Raja Giryes
25
6
0
15 Apr 2020
On Learning Rates and Schrödinger Operators
Bin Shi
Weijie J. Su
Michael I. Jordan
34
60
0
15 Apr 2020
On the interplay between physical and content priors in deep learning for computational imaging
Mo Deng
Shuai Li
Iksung Kang
N. Fang
George Barbastathis
39
26
0
14 Apr 2020
Gradient Centralization: A New Optimization Technique for Deep Neural Networks
Hongwei Yong
Jianqiang Huang
Xiansheng Hua
Lei Zhang
ODL
32
184
0
03 Apr 2020
Self-Augmentation: Generalizing Deep Networks to Unseen Classes for Few-Shot Learning
Jinhwan Seo
Hong G Jung
Seong-Whan Lee
SSL
21
39
0
01 Apr 2020
A theory of independent mechanisms for extrapolation in generative models
M. Besserve
Rémy Sun
Dominik Janzing
Bernhard Schölkopf
28
25
0
01 Apr 2020
Information Leakage in Embedding Models
Congzheng Song
A. Raghunathan
MIACV
27
263
0
31 Mar 2020
Regularizing Class-wise Predictions via Self-knowledge Distillation
Sukmin Yun
Jongjin Park
Kimin Lee
Jinwoo Shin
29
276
0
31 Mar 2020
Dataless Model Selection with the Deep Frame Potential
Calvin Murdock
Simon Lucey
41
6
0
30 Mar 2020
Unpacking Information Bottlenecks: Unifying Information-Theoretic Objectives in Deep Learning
Andreas Kirsch
Clare Lyle
Y. Gal
27
16
0
27 Mar 2020
What Deep CNNs Benefit from Global Covariance Pooling: An Optimization Perspective
Qilong Wang
Li Zhang
Banggu Wu
Dongwei Ren
P. Li
W. Zuo
Q. Hu
22
21
0
25 Mar 2020
Learn to Forget: Machine Unlearning via Neuron Masking
Yang Liu
Zhuo Ma
Ximeng Liu
Jian-wei Liu
Zhongyuan Jiang
Jianfeng Ma
Philip Yu
K. Ren
MU
27
61
0
24 Mar 2020
Dynamic Hierarchical Mimicking Towards Consistent Optimization Objectives
Duo Li
Qifeng Chen
153
19
0
24 Mar 2020
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
Charles G. Frye
James B. Simon
Neha S. Wadia
A. Ligeralde
M. DeWeese
K. Bouchard
ODL
16
2
0
23 Mar 2020
On Calibration of Mixup Training for Deep Neural Networks
Juan Maroñas
D. Ramos-Castro
Roberto Paredes Palacios
UQCV
33
6
0
22 Mar 2020
A comprehensive study on the prediction reliability of graph neural networks for virtual screening
Soojung Yang
K. Lee
Seongok Ryu
26
7
0
17 Mar 2020
What Information Does a ResNet Compress?
L. N. Darlow
Amos Storkey
SSL
32
11
0
13 Mar 2020
Analyzing Visual Representations in Embodied Navigation Tasks
Erik Wijmans
Julian Straub
Dhruv Batra
Irfan Essa
Judy Hoffman
Ari S. Morcos
19
2
0
12 Mar 2020
SASL: Saliency-Adaptive Sparsity Learning for Neural Network Acceleration
Jun Shi
Jianfeng Xu
K. Tasaka
Zhibo Chen
8
25
0
12 Mar 2020
A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via Overparameterization From Depth
Yiping Lu
Chao Ma
Yulong Lu
Jianfeng Lu
Lexing Ying
MLT
41
78
0
11 Mar 2020
Previous
1
2
3
...
12
13
14
...
21
22
23
Next