ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.04642
  4. Cited By
Harmonic Networks: Deep Translation and Rotation Equivariance

Harmonic Networks: Deep Translation and Rotation Equivariance

14 December 2016
Daniel E. Worrall
Stephan J. Garbin
Daniyar Turmukhambetov
Gabriel J. Brostow
ArXivPDFHTML

Papers citing "Harmonic Networks: Deep Translation and Rotation Equivariance"

50 / 413 papers shown
Title
Universal approximation and model compression for radial neural networks
Universal approximation and model compression for radial neural networks
I. Ganev
Twan van Laarhoven
Robin Walters
27
8
0
06 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
41
65
0
02 Jul 2021
Improving Sound Event Classification by Increasing Shift Invariance in
  Convolutional Neural Networks
Improving Sound Event Classification by Increasing Shift Invariance in Convolutional Neural Networks
Eduardo Fonseca
Andrés Ferraro
Xavier Serra
AI4TS
19
9
0
01 Jul 2021
Alias-Free Generative Adversarial Networks
Alias-Free Generative Adversarial Networks
Tero Karras
M. Aittala
S. Laine
Erik Härkönen
Janne Hellsten
J. Lehtinen
Timo Aila
GAN
104
1,562
0
23 Jun 2021
Training or Architecture? How to Incorporate Invariance in Neural
  Networks
Training or Architecture? How to Incorporate Invariance in Neural Networks
Kanchana Vaishnavi Gandikota
Jonas Geiping
Zorah Lähner
Adam Czapliñski
Michael Moeller
3DPC
OOD
28
9
0
18 Jun 2021
Equivariance-bridged SO(2)-Invariant Representation Learning using Graph
  Convolutional Network
Equivariance-bridged SO(2)-Invariant Representation Learning using Graph Convolutional Network
Sungwon Hwang
Hyungtae Lim
Hyun Myung
12
2
0
18 Jun 2021
Equivariant Networks for Pixelized Spheres
Equivariant Networks for Pixelized Spheres
Mehran Shakerinava
Siamak Ravanbakhsh
3DPC
31
19
0
12 Jun 2021
Scale-invariant scale-channel networks: Deep networks that generalise to
  previously unseen scales
Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales
Ylva Jansson
T. Lindeberg
11
23
0
11 Jun 2021
Group Equivariant Subsampling
Group Equivariant Subsampling
Jin Xu
Hyunjik Kim
Tom Rainforth
Yee Whye Teh
26
21
0
10 Jun 2021
Exploiting Learned Symmetries in Group Equivariant Convolutions
Exploiting Learned Symmetries in Group Equivariant Convolutions
A. Lengyel
Jan van Gemert
27
5
0
09 Jun 2021
Rotating spiders and reflecting dogs: a class conditional approach to
  learning data augmentation distributions
Rotating spiders and reflecting dogs: a class conditional approach to learning data augmentation distributions
Scott Mahan
Henry Kvinge
T. Doster
OOD
11
3
0
07 Jun 2021
Resolution learning in deep convolutional networks using scale-space
  theory
Resolution learning in deep convolutional networks using scale-space theory
Silvia L.Pintea
Nergis Tomen
Stanley F. Goes
Marco Loog
Jan van Gemert
SupR
SSL
30
37
0
07 Jun 2021
Commutative Lie Group VAE for Disentanglement Learning
Commutative Lie Group VAE for Disentanglement Learning
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
35
22
0
07 Jun 2021
VolterraNet: A higher order convolutional network with group
  equivariance for homogeneous manifolds
VolterraNet: A higher order convolutional network with group equivariance for homogeneous manifolds
Monami Banerjee
Rudrasis Chakraborty
Jose J. Bouza
B. Vemuri
36
11
0
05 Jun 2021
DISCO: accurate Discrete Scale Convolutions
DISCO: accurate Discrete Scale Convolutions
Ivan Sosnovik
A. Moskalev
A. Smeulders
26
31
0
04 Jun 2021
SE(3)-equivariant prediction of molecular wavefunctions and electronic
  densities
SE(3)-equivariant prediction of molecular wavefunctions and electronic densities
Oliver T. Unke
Mihail Bogojeski
M. Gastegger
Mario Geiger
Tess E. Smidt
Klaus-Robert Muller
34
86
0
04 Jun 2021
Mesh-based graph convolutional neural networks for modeling materials
  with microstructure
Mesh-based graph convolutional neural networks for modeling materials with microstructure
A. Frankel
C. Safta
Coleman Alleman
Reese E. Jones
30
15
0
04 Jun 2021
Symmetry-via-Duality: Invariant Neural Network Densities from
  Parameter-Space Correlators
Symmetry-via-Duality: Invariant Neural Network Densities from Parameter-Space Correlators
Anindita Maiti
Keegan Stoner
James Halverson
23
20
0
01 Jun 2021
Geometric Deep Learning and Equivariant Neural Networks
Geometric Deep Learning and Equivariant Neural Networks
Jan E. Gerken
J. Aronsson
Oscar Carlsson
Hampus Linander
F. Ohlsson
Christoffer Petersson
Daniel Persson
MLT
13
66
0
28 May 2021
Feature Space Targeted Attacks by Statistic Alignment
Feature Space Targeted Attacks by Statistic Alignment
Lianli Gao
Yaya Cheng
Qilong Zhang
Xing Xu
Jingkuan Song
AAML
24
31
0
25 May 2021
FILTRA: Rethinking Steerable CNN by Filter Transform
FILTRA: Rethinking Steerable CNN by Filter Transform
Bo-wen Li
Qili Wang
G. Lee
16
4
0
25 May 2021
Rotation invariant CNN using scattering transform for image
  classification
Rotation invariant CNN using scattering transform for image classification
Rosemberg Rodriguez
Eva Dokládalová
P. Dokládal
14
16
0
21 May 2021
Deep Permutation Equivariant Structure from Motion
Deep Permutation Equivariant Structure from Motion
Dror Moran
Hodaya Koslowsky
Yoni Kasten
Haggai Maron
Meirav Galun
Ronen Basri
3DPC
25
17
0
14 Apr 2021
Autoequivariant Network Search via Group Decomposition
Autoequivariant Network Search via Group Decomposition
Sourya Basu
A. Magesh
Harshit Yadav
L. Varshney
27
6
0
10 Apr 2021
Dual-Consistency Semi-Supervised Learning with Uncertainty
  Quantification for COVID-19 Lesion Segmentation from CT Images
Dual-Consistency Semi-Supervised Learning with Uncertainty Quantification for COVID-19 Lesion Segmentation from CT Images
Yanwen Li
Luyang Luo
Huangjing Lin
Hao Chen
Pheng-Ann Heng
14
52
0
07 Apr 2021
Generalization capabilities of translationally equivariant neural
  networks
Generalization capabilities of translationally equivariant neural networks
S. S. Krishna Chaitanya Bulusu
Matteo Favoni
A. Ipp
David I. Müller
Daniel Schuh
AI4CE
30
20
0
26 Mar 2021
Equivariant Point Network for 3D Point Cloud Analysis
Equivariant Point Network for 3D Point Cloud Analysis
Haiwei Chen
Shichen Liu
Weikai Chen
Hao Li
3DPC
19
99
0
25 Mar 2021
ReDet: A Rotation-equivariant Detector for Aerial Object Detection
ReDet: A Rotation-equivariant Detector for Aerial Object Detection
Jiaming Han
Jian Ding
Nan Xue
Guisong Xia
32
520
0
13 Mar 2021
On the geometric and Riemannian structure of the spaces of group
  equivariant non-expansive operators
On the geometric and Riemannian structure of the spaces of group equivariant non-expansive operators
Pasquale Cascarano
Patrizio Frosini
Nicola Quercioli
A. Saki
22
3
0
03 Mar 2021
Abelian Neural Networks
Abelian Neural Networks
Kenshi Abe
Takanori Maehara
Issei Sato
11
2
0
24 Feb 2021
Equivariant neural networks for inverse problems
Equivariant neural networks for inverse problems
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
MedIm
AI4CE
14
26
0
23 Feb 2021
Rotation-Equivariant Deep Learning for Diffusion MRI
Rotation-Equivariant Deep Learning for Diffusion MRI
Philip Muller
Vladimir Golkov
V. Tomassini
Daniel Cremers
DiffM
MedIm
25
28
0
13 Feb 2021
Spectral Leakage and Rethinking the Kernel Size in CNNs
Spectral Leakage and Rethinking the Kernel Size in CNNs
Nergis Tomen
Jan van Gemert
AAML
24
18
0
25 Jan 2021
Rotation Equivariant Siamese Networks for Tracking
Rotation Equivariant Siamese Networks for Tracking
D. K. Gupta
Devanshu Arya
E. Gavves
31
36
0
24 Dec 2020
LieTransformer: Equivariant self-attention for Lie Groups
LieTransformer: Equivariant self-attention for Lie Groups
M. Hutchinson
Charline Le Lan
Sheheryar Zaidi
Emilien Dupont
Yee Whye Teh
Hyunjik Kim
26
111
0
20 Dec 2020
Augmentation Inside the Network
Augmentation Inside the Network
Maciej Sypetkowski
Jakub Jasiulewicz
Z. Wojna
OOD
14
2
0
19 Dec 2020
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
95
1,377
0
14 Dec 2020
The Lottery Tickets Hypothesis for Supervised and Self-supervised
  Pre-training in Computer Vision Models
The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models
Tianlong Chen
Jonathan Frankle
Shiyu Chang
Sijia Liu
Yang Zhang
Michael Carbin
Zhangyang Wang
27
123
0
12 Dec 2020
Rotation-Invariant Autoencoders for Signals on Spheres
Rotation-Invariant Autoencoders for Signals on Spheres
Suhas Lohit
Shubhendu Trivedi
MDE
22
5
0
08 Dec 2020
Learning Equivariant Representations
Learning Equivariant Representations
Carlos Esteves
BDL
32
0
0
04 Dec 2020
Kernel-convoluted Deep Neural Networks with Data Augmentation
Kernel-convoluted Deep Neural Networks with Data Augmentation
Minjin Kim
Young-geun Kim
Dongha Kim
Yongdai Kim
M. Paik
17
0
0
04 Dec 2020
Truly shift-invariant convolutional neural networks
Truly shift-invariant convolutional neural networks
Anadi Chaman
Ivan Dokmanić
23
68
0
28 Nov 2020
Equivariant Learning of Stochastic Fields: Gaussian Processes and
  Steerable Conditional Neural Processes
Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes
P. Holderrieth
M. Hutchinson
Yee Whye Teh
BDL
36
30
0
25 Nov 2020
Learnable Gabor modulated complex-valued networks for orientation
  robustness
Learnable Gabor modulated complex-valued networks for orientation robustness
Felix Richards
A. Paiement
Xianghua Xie
Elisabeth Sola
Pierre-Alain Duc
19
2
0
23 Nov 2020
Quantifying and Learning Linear Symmetry-Based Disentanglement
Quantifying and Learning Linear Symmetry-Based Disentanglement
Loek Tonnaer
L. Rey
Vlado Menkovski
Mike Holenderski
J. Portegies
FedML
CoGe
DRL
21
13
0
11 Nov 2020
Latent Causal Invariant Model
Latent Causal Invariant Model
Xinwei Sun
Botong Wu
Xiangyu Zheng
Chang-Shu Liu
Wei Chen
Tao Qin
Tie-Yan Liu
OOD
CML
BDL
29
14
0
04 Nov 2020
Learning Invariances in Neural Networks
Learning Invariances in Neural Networks
Gregory W. Benton
Marc Finzi
Pavel Izmailov
A. Wilson
21
69
0
22 Oct 2020
Trajectory Prediction using Equivariant Continuous Convolution
Trajectory Prediction using Equivariant Continuous Convolution
Robin Walters
Jinxi Li
Rose Yu
26
43
0
21 Oct 2020
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
Leon Lang
Maurice Weiler
35
53
0
21 Oct 2020
Probabilistic Numeric Convolutional Neural Networks
Probabilistic Numeric Convolutional Neural Networks
Marc Finzi
Roberto Bondesan
Max Welling
BDL
AI4TS
29
13
0
21 Oct 2020
Previous
123456789
Next