Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1612.04642
Cited By
Harmonic Networks: Deep Translation and Rotation Equivariance
14 December 2016
Daniel E. Worrall
Stephan J. Garbin
Daniyar Turmukhambetov
Gabriel J. Brostow
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Harmonic Networks: Deep Translation and Rotation Equivariance"
50 / 413 papers shown
Title
Universal approximation and model compression for radial neural networks
I. Ganev
Twan van Laarhoven
Robin Walters
27
8
0
06 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
41
65
0
02 Jul 2021
Improving Sound Event Classification by Increasing Shift Invariance in Convolutional Neural Networks
Eduardo Fonseca
Andrés Ferraro
Xavier Serra
AI4TS
19
9
0
01 Jul 2021
Alias-Free Generative Adversarial Networks
Tero Karras
M. Aittala
S. Laine
Erik Härkönen
Janne Hellsten
J. Lehtinen
Timo Aila
GAN
104
1,562
0
23 Jun 2021
Training or Architecture? How to Incorporate Invariance in Neural Networks
Kanchana Vaishnavi Gandikota
Jonas Geiping
Zorah Lähner
Adam Czapliñski
Michael Moeller
3DPC
OOD
28
9
0
18 Jun 2021
Equivariance-bridged SO(2)-Invariant Representation Learning using Graph Convolutional Network
Sungwon Hwang
Hyungtae Lim
Hyun Myung
12
2
0
18 Jun 2021
Equivariant Networks for Pixelized Spheres
Mehran Shakerinava
Siamak Ravanbakhsh
3DPC
31
19
0
12 Jun 2021
Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales
Ylva Jansson
T. Lindeberg
11
23
0
11 Jun 2021
Group Equivariant Subsampling
Jin Xu
Hyunjik Kim
Tom Rainforth
Yee Whye Teh
26
21
0
10 Jun 2021
Exploiting Learned Symmetries in Group Equivariant Convolutions
A. Lengyel
Jan van Gemert
27
5
0
09 Jun 2021
Rotating spiders and reflecting dogs: a class conditional approach to learning data augmentation distributions
Scott Mahan
Henry Kvinge
T. Doster
OOD
11
3
0
07 Jun 2021
Resolution learning in deep convolutional networks using scale-space theory
Silvia L.Pintea
Nergis Tomen
Stanley F. Goes
Marco Loog
Jan van Gemert
SupR
SSL
30
37
0
07 Jun 2021
Commutative Lie Group VAE for Disentanglement Learning
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
35
22
0
07 Jun 2021
VolterraNet: A higher order convolutional network with group equivariance for homogeneous manifolds
Monami Banerjee
Rudrasis Chakraborty
Jose J. Bouza
B. Vemuri
36
11
0
05 Jun 2021
DISCO: accurate Discrete Scale Convolutions
Ivan Sosnovik
A. Moskalev
A. Smeulders
26
31
0
04 Jun 2021
SE(3)-equivariant prediction of molecular wavefunctions and electronic densities
Oliver T. Unke
Mihail Bogojeski
M. Gastegger
Mario Geiger
Tess E. Smidt
Klaus-Robert Muller
34
86
0
04 Jun 2021
Mesh-based graph convolutional neural networks for modeling materials with microstructure
A. Frankel
C. Safta
Coleman Alleman
Reese E. Jones
30
15
0
04 Jun 2021
Symmetry-via-Duality: Invariant Neural Network Densities from Parameter-Space Correlators
Anindita Maiti
Keegan Stoner
James Halverson
23
20
0
01 Jun 2021
Geometric Deep Learning and Equivariant Neural Networks
Jan E. Gerken
J. Aronsson
Oscar Carlsson
Hampus Linander
F. Ohlsson
Christoffer Petersson
Daniel Persson
MLT
13
66
0
28 May 2021
Feature Space Targeted Attacks by Statistic Alignment
Lianli Gao
Yaya Cheng
Qilong Zhang
Xing Xu
Jingkuan Song
AAML
24
31
0
25 May 2021
FILTRA: Rethinking Steerable CNN by Filter Transform
Bo-wen Li
Qili Wang
G. Lee
16
4
0
25 May 2021
Rotation invariant CNN using scattering transform for image classification
Rosemberg Rodriguez
Eva Dokládalová
P. Dokládal
14
16
0
21 May 2021
Deep Permutation Equivariant Structure from Motion
Dror Moran
Hodaya Koslowsky
Yoni Kasten
Haggai Maron
Meirav Galun
Ronen Basri
3DPC
25
17
0
14 Apr 2021
Autoequivariant Network Search via Group Decomposition
Sourya Basu
A. Magesh
Harshit Yadav
L. Varshney
27
6
0
10 Apr 2021
Dual-Consistency Semi-Supervised Learning with Uncertainty Quantification for COVID-19 Lesion Segmentation from CT Images
Yanwen Li
Luyang Luo
Huangjing Lin
Hao Chen
Pheng-Ann Heng
14
52
0
07 Apr 2021
Generalization capabilities of translationally equivariant neural networks
S. S. Krishna Chaitanya Bulusu
Matteo Favoni
A. Ipp
David I. Müller
Daniel Schuh
AI4CE
30
20
0
26 Mar 2021
Equivariant Point Network for 3D Point Cloud Analysis
Haiwei Chen
Shichen Liu
Weikai Chen
Hao Li
3DPC
19
99
0
25 Mar 2021
ReDet: A Rotation-equivariant Detector for Aerial Object Detection
Jiaming Han
Jian Ding
Nan Xue
Guisong Xia
32
520
0
13 Mar 2021
On the geometric and Riemannian structure of the spaces of group equivariant non-expansive operators
Pasquale Cascarano
Patrizio Frosini
Nicola Quercioli
A. Saki
22
3
0
03 Mar 2021
Abelian Neural Networks
Kenshi Abe
Takanori Maehara
Issei Sato
11
2
0
24 Feb 2021
Equivariant neural networks for inverse problems
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
MedIm
AI4CE
14
26
0
23 Feb 2021
Rotation-Equivariant Deep Learning for Diffusion MRI
Philip Muller
Vladimir Golkov
V. Tomassini
Daniel Cremers
DiffM
MedIm
25
28
0
13 Feb 2021
Spectral Leakage and Rethinking the Kernel Size in CNNs
Nergis Tomen
Jan van Gemert
AAML
24
18
0
25 Jan 2021
Rotation Equivariant Siamese Networks for Tracking
D. K. Gupta
Devanshu Arya
E. Gavves
31
36
0
24 Dec 2020
LieTransformer: Equivariant self-attention for Lie Groups
M. Hutchinson
Charline Le Lan
Sheheryar Zaidi
Emilien Dupont
Yee Whye Teh
Hyunjik Kim
26
111
0
20 Dec 2020
Augmentation Inside the Network
Maciej Sypetkowski
Jakub Jasiulewicz
Z. Wojna
OOD
14
2
0
19 Dec 2020
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
95
1,377
0
14 Dec 2020
The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models
Tianlong Chen
Jonathan Frankle
Shiyu Chang
Sijia Liu
Yang Zhang
Michael Carbin
Zhangyang Wang
27
123
0
12 Dec 2020
Rotation-Invariant Autoencoders for Signals on Spheres
Suhas Lohit
Shubhendu Trivedi
MDE
22
5
0
08 Dec 2020
Learning Equivariant Representations
Carlos Esteves
BDL
32
0
0
04 Dec 2020
Kernel-convoluted Deep Neural Networks with Data Augmentation
Minjin Kim
Young-geun Kim
Dongha Kim
Yongdai Kim
M. Paik
17
0
0
04 Dec 2020
Truly shift-invariant convolutional neural networks
Anadi Chaman
Ivan Dokmanić
23
68
0
28 Nov 2020
Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes
P. Holderrieth
M. Hutchinson
Yee Whye Teh
BDL
36
30
0
25 Nov 2020
Learnable Gabor modulated complex-valued networks for orientation robustness
Felix Richards
A. Paiement
Xianghua Xie
Elisabeth Sola
Pierre-Alain Duc
19
2
0
23 Nov 2020
Quantifying and Learning Linear Symmetry-Based Disentanglement
Loek Tonnaer
L. Rey
Vlado Menkovski
Mike Holenderski
J. Portegies
FedML
CoGe
DRL
21
13
0
11 Nov 2020
Latent Causal Invariant Model
Xinwei Sun
Botong Wu
Xiangyu Zheng
Chang-Shu Liu
Wei Chen
Tao Qin
Tie-Yan Liu
OOD
CML
BDL
29
14
0
04 Nov 2020
Learning Invariances in Neural Networks
Gregory W. Benton
Marc Finzi
Pavel Izmailov
A. Wilson
21
69
0
22 Oct 2020
Trajectory Prediction using Equivariant Continuous Convolution
Robin Walters
Jinxi Li
Rose Yu
26
43
0
21 Oct 2020
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
Leon Lang
Maurice Weiler
35
53
0
21 Oct 2020
Probabilistic Numeric Convolutional Neural Networks
Marc Finzi
Roberto Bondesan
Max Welling
BDL
AI4TS
29
13
0
21 Oct 2020
Previous
1
2
3
4
5
6
7
8
9
Next