Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.04595
Cited By
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
15 February 2017
L. Zintgraf
Taco S. Cohen
T. Adel
Max Welling
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Visualizing Deep Neural Network Decisions: Prediction Difference Analysis"
50 / 328 papers shown
Title
Software and application patterns for explanation methods
Maximilian Alber
17
11
0
09 Apr 2019
Visualization of Convolutional Neural Networks for Monocular Depth Estimation
Junjie Hu
Yan Zhang
Takayuki Okatani
MDE
17
83
0
06 Apr 2019
Finding and Visualizing Weaknesses of Deep Reinforcement Learning Agents
Christian Rupprecht
Cyril Ibrahim
C. Pal
13
32
0
02 Apr 2019
Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Values Approximation
Marco Ancona
Cengiz Öztireli
Markus Gross
FAtt
TDI
14
223
0
26 Mar 2019
Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet
Wieland Brendel
Matthias Bethge
SSL
FAtt
15
557
0
20 Mar 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
20
1,282
0
10 Mar 2019
Aggregating explanation methods for stable and robust explainability
Laura Rieger
Lars Kai Hansen
AAML
FAtt
27
11
0
01 Mar 2019
Capacity allocation through neural network layers
Jonathan Donier
9
3
0
22 Feb 2019
Capacity allocation analysis of neural networks: A tool for principled architecture design
Jonathan Donier
14
4
0
12 Feb 2019
Learning Decision Trees Recurrently Through Communication
Stephan Alaniz
Diego Marcos
Bernt Schiele
Zeynep Akata
17
16
0
05 Feb 2019
Visual Rationalizations in Deep Reinforcement Learning for Atari Games
L. Weitkamp
Elise van der Pol
Zeynep Akata
8
27
0
01 Feb 2019
On the (In)fidelity and Sensitivity for Explanations
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
17
445
0
27 Jan 2019
Learning Global Pairwise Interactions with Bayesian Neural Networks
Tianyu Cui
Pekka Marttinen
Samuel Kaski
BDL
11
17
0
24 Jan 2019
SISC: End-to-end Interpretable Discovery Radiomics-Driven Lung Cancer Prediction via Stacked Interpretable Sequencing Cells
Vignesh Sankar
Devinder Kumar
David A Clausi
Graham W. Taylor
Alexander Wong
11
22
0
15 Jan 2019
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch
Chandan Singh
Karl Kumbier
R. Abbasi-Asl
Bin-Xia Yu
XAI
HAI
21
1,415
0
14 Jan 2019
A Survey of Safety and Trustworthiness of Deep Neural Networks: Verification, Testing, Adversarial Attack and Defence, and Interpretability
Xiaowei Huang
Daniel Kroening
Wenjie Ruan
M. Kwiatkowska
Youcheng Sun
Emese Thamo
Min Wu
Xinping Yi
AAML
8
50
0
18 Dec 2018
Efficient Interpretation of Deep Learning Models Using Graph Structure and Cooperative Game Theory: Application to ASD Biomarker Discovery
Xiaoxiao Li
Nicha Dvornek
Yuan Zhou
Juntang Zhuang
P. Ventola
James S. Duncan
132
19
0
14 Dec 2018
Interpretable Graph Convolutional Neural Networks for Inference on Noisy Knowledge Graphs
Daniel Neil
Joss Briody
A. Lacoste
Aaron Sim
Páidí Creed
Amir Saffari
GNN
66
35
0
01 Dec 2018
Rank Projection Trees for Multilevel Neural Network Interpretation
J. Warrell
Hussein Mohsen
M. Gerstein
FAtt
14
0
0
01 Dec 2018
A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems
Sina Mohseni
Niloofar Zarei
Eric D. Ragan
23
102
0
28 Nov 2018
A Visual Interaction Framework for Dimensionality Reduction Based Data Exploration
M. Cavallo
Çağatay Demiralp
6
55
0
28 Nov 2018
Deformable ConvNets v2: More Deformable, Better Results
Xizhou Zhu
Han Hu
Stephen Lin
Jifeng Dai
ObjD
22
1,980
0
27 Nov 2018
Data Augmentation using Random Image Cropping and Patching for Deep CNNs
Ryo Takahashi
Takashi Matsubara
K. Uehara
9
326
0
22 Nov 2018
How You See Me
Rohit Gandikota
Deepak Mishra
OOD
14
0
0
20 Nov 2018
Explain to Fix: A Framework to Interpret and Correct DNN Object Detector Predictions
Denis A. Gudovskiy
Alec Hodgkinson
Takuya Yamaguchi
Yasunori Ishii
Sotaro Tsukizawa
FAtt
14
13
0
19 Nov 2018
An Overview of Computational Approaches for Interpretation Analysis
Philipp Blandfort
Jörn Hees
D. Patton
19
2
0
09 Nov 2018
Explaining Deep Learning Models - A Bayesian Non-parametric Approach
Wenbo Guo
Sui Huang
Yunzhe Tao
Xinyu Xing
Lin Lin
BDL
11
47
0
07 Nov 2018
What evidence does deep learning model use to classify Skin Lesions?
Xiaoxiao Li
Junyan Wu
Eric Z. Chen
Hongda Jiang
11
9
0
02 Nov 2018
Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values
Julius Adebayo
Justin Gilmer
Ian Goodfellow
Been Kim
FAtt
AAML
11
128
0
08 Oct 2018
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
12
1,926
0
08 Oct 2018
Diagnosing Convolutional Neural Networks using their Spectral Response
V. Stamatescu
Mark D Mcdonnell
14
3
0
08 Oct 2018
A Gradient-Based Split Criterion for Highly Accurate and Transparent Model Trees
Klaus Broelemann
Gjergji Kasneci
14
20
0
25 Sep 2018
Ensemble learning with 3D convolutional neural networks for connectome-based prediction
Meenakshi Khosla
K. Jamison
Amy Kuceyeski
M. Sabuncu
3DV
6
88
0
11 Sep 2018
Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI
Xiaoxiao Li
Nicha Dvornek
Juntang Zhuang
P. Ventola
James S. Duncan
26
70
0
23 Aug 2018
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Xia Hu
FaML
22
1,071
0
31 Jul 2018
Regional Multi-scale Approach for Visually Pleasing Explanations of Deep Neural Networks
Dasom Seo
Kanghan Oh
Il-Seok Oh
FAtt
17
23
0
31 Jul 2018
Computationally Efficient Measures of Internal Neuron Importance
Avanti Shrikumar
Jocelin Su
A. Kundaje
FAtt
11
29
0
26 Jul 2018
Grounding Visual Explanations
Lisa Anne Hendricks
Ronghang Hu
Trevor Darrell
Zeynep Akata
FAtt
6
225
0
25 Jul 2018
Explaining Image Classifiers by Counterfactual Generation
C. Chang
Elliot Creager
Anna Goldenberg
D. Duvenaud
VLM
11
264
0
20 Jul 2018
Women also Snowboard: Overcoming Bias in Captioning Models (Extended Abstract)
Lisa Anne Hendricks
Kaylee Burns
Kate Saenko
Trevor Darrell
Anna Rohrbach
14
477
0
02 Jul 2018
A Benchmark for Interpretability Methods in Deep Neural Networks
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
16
670
0
28 Jun 2018
Quantum-chemical insights from interpretable atomistic neural networks
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
AI4CE
15
31
0
27 Jun 2018
Hierarchical interpretations for neural network predictions
Chandan Singh
W. James Murdoch
Bin Yu
15
145
0
14 Jun 2018
RetainVis: Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records
Bum Chul Kwon
Min-Je Choi
J. Kim
E. Choi
Young Bin Kim
Soonwook Kwon
Jimeng Sun
Jaegul Choo
25
251
0
28 May 2018
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models
Jacob R. Kauffmann
K. Müller
G. Montavon
DRL
28
96
0
16 May 2018
Seq2Seq-Vis: A Visual Debugging Tool for Sequence-to-Sequence Models
Hendrik Strobelt
Sebastian Gehrmann
M. Behrisch
Adam Perer
Hanspeter Pfister
Alexander M. Rush
VLM
HAI
23
239
0
25 Apr 2018
Opening the black box of neural nets: case studies in stop/top discrimination
Thomas Roxlo
M. Reece
8
22
0
24 Apr 2018
Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges
Gabrielle Ras
Marcel van Gerven
W. Haselager
XAI
14
217
0
20 Mar 2018
Multimodal Explanations: Justifying Decisions and Pointing to the Evidence
Dong Huk Park
Lisa Anne Hendricks
Zeynep Akata
Anna Rohrbach
Bernt Schiele
Trevor Darrell
Marcus Rohrbach
35
418
0
15 Feb 2018
TSViz: Demystification of Deep Learning Models for Time-Series Analysis
Shoaib Ahmed Siddiqui
Dominique Mercier
Mohsin Munir
Andreas Dengel
Sheraz Ahmed
FAtt
AI4TS
24
82
0
08 Feb 2018
Previous
1
2
3
4
5
6
7
Next