Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.11008
Cited By
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
31 March 2017
Gintare Karolina Dziugaite
Daniel M. Roy
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data"
50 / 168 papers shown
Title
Generalization Guarantees for Multi-View Representation Learning and Application to Regularization via Gaussian Product Mixture Prior
Milad Sefidgaran
Abdellatif Zaidi
Piotr Krasnowski
44
0
0
25 Apr 2025
SplatPose: Geometry-Aware 6-DoF Pose Estimation from Single RGB Image via 3D Gaussian Splatting
Linqi Yang
Xiongwei Zhao
Qihao Sun
Ke Wang
Ao Chen
Peng Kang
3DGS
76
2
0
07 Mar 2025
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
Milad Sefidgaran
A. Zaidi
Piotr Krasnowski
85
1
0
21 Feb 2025
Stability-based Generalization Bounds for Variational Inference
Yadi Wei
R. Khardon
BDL
44
0
0
17 Feb 2025
Universal Sharpness Dynamics in Neural Network Training: Fixed Point Analysis, Edge of Stability, and Route to Chaos
Dayal Singh Kalra
Tianyu He
M. Barkeshli
47
4
0
17 Feb 2025
Model Diffusion for Certifiable Few-shot Transfer Learning
Fady Rezk
Royson Lee
H. Gouk
Timothy M. Hospedales
Minyoung Kim
48
0
0
10 Feb 2025
Evolutionary Optimization of Model Merging Recipes
Takuya Akiba
Makoto Shing
Yujin Tang
Qi Sun
David Ha
MoMe
105
99
0
28 Jan 2025
Seeking Consistent Flat Minima for Better Domain Generalization via Refining Loss Landscapes
Aodi Li
Liansheng Zhuang
Xiao Long
Minghong Yao
Shafei Wang
180
0
0
18 Dec 2024
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Dun Zeng
Zheshun Wu
Shiyu Liu
Yu Pan
Xiaoying Tang
Zenglin Xu
MLT
FedML
87
1
0
25 Nov 2024
Understanding Generalization in Quantum Machine Learning with Margins
Tak Hur
Daniel K. Park
AI4CE
26
1
0
11 Nov 2024
Multi-View Majority Vote Learning Algorithms: Direct Minimization of PAC-Bayesian Bounds
Mehdi Hennequin
Abdelkrim Zitouni
K. Benabdeslem
H. Elghazel
Yacine Gaci
26
0
0
09 Nov 2024
Theoretical characterisation of the Gauss-Newton conditioning in Neural Networks
Jim Zhao
Sidak Pal Singh
Aurélien Lucchi
AI4CE
39
0
0
04 Nov 2024
MomentumSMoE: Integrating Momentum into Sparse Mixture of Experts
R. Teo
Tan M. Nguyen
MoE
31
3
0
18 Oct 2024
OledFL: Unleashing the Potential of Decentralized Federated Learning via Opposite Lookahead Enhancement
Qinglun Li
Miao Zhang
Mengzhu Wang
Quanjun Yin
Li Shen
OODD
FedML
19
0
0
09 Oct 2024
QT-DoG: Quantization-aware Training for Domain Generalization
Saqib Javed
Hieu Le
Mathieu Salzmann
OOD
MQ
28
1
0
08 Oct 2024
Can Optimization Trajectories Explain Multi-Task Transfer?
David Mueller
Mark Dredze
Nicholas Andrews
53
1
0
26 Aug 2024
Just How Flexible are Neural Networks in Practice?
Ravid Shwartz-Ziv
Micah Goldblum
Arpit Bansal
C. B. Bruss
Yann LeCun
Andrew Gordon Wilson
37
4
0
17 Jun 2024
What Does Softmax Probability Tell Us about Classifiers Ranking Across Diverse Test Conditions?
Weijie Tu
Weijian Deng
Liang Zheng
Tom Gedeon
37
0
0
14 Jun 2024
Agnostic Sharpness-Aware Minimization
Van-Anh Nguyen
Quyen Tran
Tuan Truong
Thanh-Toan Do
Dinh Q. Phung
Trung Le
38
0
0
11 Jun 2024
A Margin-based Multiclass Generalization Bound via Geometric Complexity
Michael Munn
Benoit Dherin
Javier Gonzalvo
UQCV
40
2
0
28 May 2024
Recursive PAC-Bayes: A Frequentist Approach to Sequential Prior Updates with No Information Loss
Yi-Shan Wu
Yijie Zhang
Badr-Eddine Chérief-Abdellatif
Yevgeny Seldin
26
1
0
23 May 2024
Why is SAM Robust to Label Noise?
Christina Baek
Zico Kolter
Aditi Raghunathan
NoLa
AAML
41
9
0
06 May 2024
Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
Benjamin Dupuis
Paul Viallard
George Deligiannidis
Umut Simsekli
40
2
0
26 Apr 2024
Flatness Improves Backbone Generalisation in Few-shot Classification
Rui Li
Martin Trapp
Marcus Klasson
Arno Solin
43
0
0
11 Apr 2024
Information-Theoretic Generalization Bounds for Deep Neural Networks
Haiyun He
Christina Lee Yu
35
4
0
04 Apr 2024
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity Measures
Paul Viallard
Rémi Emonet
Amaury Habrard
Emilie Morvant
Valentina Zantedeschi
33
3
0
19 Feb 2024
A PAC-Bayesian Link Between Generalisation and Flat Minima
Maxime Haddouche
Paul Viallard
Umut Simsekli
Benjamin Guedj
35
3
0
13 Feb 2024
Critical Influence of Overparameterization on Sharpness-aware Minimization
Sungbin Shin
Dongyeop Lee
Maksym Andriushchenko
Namhoon Lee
AAML
44
1
0
29 Nov 2023
Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
Huayi Tang
Yong Liu
57
1
0
08 Nov 2023
Investigating the Ability of PINNs To Solve Burgers' PDE Near Finite-Time BlowUp
Dibyakanti Kumar
Anirbit Mukherjee
31
2
0
08 Oct 2023
Lookbehind-SAM: k steps back, 1 step forward
Gonçalo Mordido
Pranshu Malviya
A. Baratin
Sarath Chandar
AAML
40
1
0
31 Jul 2023
Understanding Deep Neural Networks via Linear Separability of Hidden Layers
Chao Zhang
Xinyuan Chen
Wensheng Li
Lixue Liu
Wei Wu
Dacheng Tao
18
3
0
26 Jul 2023
Sharpness Minimization Algorithms Do Not Only Minimize Sharpness To Achieve Better Generalization
Kaiyue Wen
Zhiyuan Li
Tengyu Ma
FAtt
36
26
0
20 Jul 2023
Source-Aware Embedding Training on Heterogeneous Information Networks
Tsai Hor Chan
Chi Ho Wong
Jiajun Shen
Guosheng Yin
27
4
0
10 Jul 2023
More PAC-Bayes bounds: From bounded losses, to losses with general tail behaviors, to anytime validity
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
26
9
0
21 Jun 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
26
6
0
25 May 2023
An Adaptive Policy to Employ Sharpness-Aware Minimization
Weisen Jiang
Hansi Yang
Yu Zhang
James T. Kwok
AAML
81
31
0
28 Apr 2023
Fundamental Tradeoffs in Learning with Prior Information
Anirudha Majumdar
27
0
0
26 Apr 2023
Generalization Matters: Loss Minima Flattening via Parameter Hybridization for Efficient Online Knowledge Distillation
Tianli Zhang
Mengqi Xue
Jiangtao Zhang
Haofei Zhang
Yu Wang
Lechao Cheng
Jie Song
Mingli Song
28
5
0
26 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
36
34
0
19 Mar 2023
DiTTO: A Feature Representation Imitation Approach for Improving Cross-Lingual Transfer
Shanu Kumar
Abbaraju Soujanya
Sandipan Dandapat
Sunayana Sitaram
Monojit Choudhury
VLM
25
1
0
04 Mar 2023
DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks
Samyak Jain
Sravanti Addepalli
P. Sahu
Priyam Dey
R. Venkatesh Babu
MoMe
OOD
35
20
0
28 Feb 2023
mSAM: Micro-Batch-Averaged Sharpness-Aware Minimization
Kayhan Behdin
Qingquan Song
Aman Gupta
S. Keerthi
Ayan Acharya
Borja Ocejo
Gregory Dexter
Rajiv Khanna
D. Durfee
Rahul Mazumder
AAML
13
7
0
19 Feb 2023
Global Convergence Rate of Deep Equilibrium Models with General Activations
Lan V. Truong
37
2
0
11 Feb 2023
Generalization in Graph Neural Networks: Improved PAC-Bayesian Bounds on Graph Diffusion
Haotian Ju
Dongyue Li
Aneesh Sharma
Hongyang R. Zhang
23
40
0
09 Feb 2023
PAC-Bayesian Soft Actor-Critic Learning
Bahareh Tasdighi
Abdullah Akgul
Manuel Haussmann
Kenny Kazimirzak Brink
M. Kandemir
26
3
0
30 Jan 2023
Exploring the Effect of Multi-step Ascent in Sharpness-Aware Minimization
Hoki Kim
Jinseong Park
Yujin Choi
Woojin Lee
Jaewook Lee
15
9
0
27 Jan 2023
An SDE for Modeling SAM: Theory and Insights
Enea Monzio Compagnoni
Luca Biggio
Antonio Orvieto
F. Proske
Hans Kersting
Aurélien Lucchi
21
13
0
19 Jan 2023
Stability Analysis of Sharpness-Aware Minimization
Hoki Kim
Jinseong Park
Yujin Choi
Jaewook Lee
28
12
0
16 Jan 2023
WLD-Reg: A Data-dependent Within-layer Diversity Regularizer
Firas Laakom
Jenni Raitoharju
Alexandros Iosifidis
M. Gabbouj
AI4CE
23
7
0
03 Jan 2023
1
2
3
4
Next