Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.11008
Cited By
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
31 March 2017
Gintare Karolina Dziugaite
Daniel M. Roy
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data"
50 / 168 papers shown
Title
In Search of Probeable Generalization Measures
Jonathan Jaegerman
Khalil Damouni
M. M. Ankaralı
Konstantinos N. Plataniotis
19
2
0
23 Oct 2021
Probabilistic fine-tuning of pruning masks and PAC-Bayes self-bounded learning
Soufiane Hayou
Bo He
Gintare Karolina Dziugaite
20
2
0
22 Oct 2021
User-friendly introduction to PAC-Bayes bounds
Pierre Alquier
FedML
48
196
0
21 Oct 2021
VC dimension of partially quantized neural networks in the overparametrized regime
Yutong Wang
Clayton D. Scott
14
1
0
06 Oct 2021
Perturbated Gradients Updating within Unit Space for Deep Learning
Ching-Hsun Tseng
Liu Cheng
Shin-Jye Lee
Xiaojun Zeng
38
5
0
01 Oct 2021
Ridgeless Interpolation with Shallow ReLU Networks in
1
D
1D
1
D
is Nearest Neighbor Curvature Extrapolation and Provably Generalizes on Lipschitz Functions
Boris Hanin
MLT
32
9
0
27 Sep 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
29
71
0
06 Sep 2021
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
55
73
0
09 Jul 2021
A Theoretical Analysis of Fine-tuning with Linear Teachers
Gal Shachaf
Alon Brutzkus
Amir Globerson
26
17
0
04 Jul 2021
PAC-Bayes, MAC-Bayes and Conditional Mutual Information: Fast rate bounds that handle general VC classes
Peter Grünwald
Thomas Steinke
Lydia Zakynthinou
21
29
0
17 Jun 2021
Fractal Structure and Generalization Properties of Stochastic Optimization Algorithms
A. Camuto
George Deligiannidis
Murat A. Erdogdu
Mert Gurbuzbalaban
Umut cSimcsekli
Lingjiong Zhu
25
29
0
09 Jun 2021
RATT: Leveraging Unlabeled Data to Guarantee Generalization
Saurabh Garg
Sivaraman Balakrishnan
J. Zico Kolter
Zachary Chase Lipton
28
29
0
01 May 2021
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
31
13
0
29 Apr 2021
Generalization bounds via distillation
Daniel J. Hsu
Ziwei Ji
Matus Telgarsky
Lan Wang
FedML
13
32
0
12 Apr 2021
Risk Bounds for Learning via Hilbert Coresets
Spencer Douglas
Piyush Kumar
R. Prasanth
16
0
0
29 Mar 2021
PAC-Bayesian theory for stochastic LTI systems
Deividas Eringis
J. Leth
Z. Tan
Rafal Wisniewski
Alireza Fakhrizadeh Esfahani
M. Petreczky
11
9
0
23 Mar 2021
Computing the Information Content of Trained Neural Networks
Jeremy Bernstein
Yisong Yue
14
4
0
01 Mar 2021
Deep ReLU Networks Preserve Expected Length
Boris Hanin
Ryan Jeong
David Rolnick
13
14
0
21 Feb 2021
Generalization Bounds for Meta-Learning via PAC-Bayes and Uniform Stability
Alec Farid
Anirudha Majumdar
24
34
0
12 Feb 2021
NeurIPS 2020 Competition: Predicting Generalization in Deep Learning
Yiding Jiang
Pierre Foret
Scott Yak
Daniel M. Roy
H. Mobahi
Gintare Karolina Dziugaite
Samy Bengio
Suriya Gunasekar
Isabelle M Guyon
Behnam Neyshabur Google Research
OOD
16
55
0
14 Dec 2020
On 1/n neural representation and robustness
Josue Nassar
Piotr A. Sokól
SueYeon Chung
K. Harris
Il Memming Park
AAML
OOD
16
23
0
08 Dec 2020
Margin-Based Transfer Bounds for Meta Learning with Deep Feature Embedding
Jiechao Guan
Zhiwu Lu
Tao Xiang
Timothy M. Hospedales
16
0
0
02 Dec 2020
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
34
23
0
27 Oct 2020
For self-supervised learning, Rationality implies generalization, provably
Yamini Bansal
Gal Kaplun
Boaz Barak
OOD
SSL
58
22
0
16 Oct 2020
Sharpness-Aware Minimization for Efficiently Improving Generalization
Pierre Foret
Ariel Kleiner
H. Mobahi
Behnam Neyshabur
AAML
31
1,276
0
03 Oct 2020
Analysis of Generalizability of Deep Neural Networks Based on the Complexity of Decision Boundary
Shuyue Guan
Murray H. Loew
17
25
0
16 Sep 2020
PAC-Bayes Analysis Beyond the Usual Bounds
Omar Rivasplata
Ilja Kuzborskij
Csaba Szepesvári
John Shawe-Taylor
27
80
0
23 Jun 2020
Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks
Umut Simsekli
Ozan Sener
George Deligiannidis
Murat A. Erdogdu
41
55
0
16 Jun 2020
Speedy Performance Estimation for Neural Architecture Search
Binxin Ru
Clare Lyle
Lisa Schut
M. Fil
Mark van der Wilk
Y. Gal
15
35
0
08 Jun 2020
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
36
148
0
16 May 2020
Generalization Bounds via Information Density and Conditional Information Density
Fredrik Hellström
G. Durisi
15
65
0
16 May 2020
Probably Approximately Correct Vision-Based Planning using Motion Primitives
Sushant Veer
Anirudha Majumdar
3DV
14
21
0
28 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
19
639
0
20 Feb 2020
A Diffusion Theory For Deep Learning Dynamics: Stochastic Gradient Descent Exponentially Favors Flat Minima
Zeke Xie
Issei Sato
Masashi Sugiyama
ODL
20
17
0
10 Feb 2020
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAML
OOD
30
85
0
09 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
11
116
0
03 Oct 2019
Minimum Description Length Revisited
Peter Grünwald
Teemu Roos
15
64
0
21 Aug 2019
PAC-Bayes with Backprop
Omar Rivasplata
Vikram Tankasali
Csaba Szepesvári
18
49
0
19 Aug 2019
A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems
Meng Tang
Yimin Liu
L. Durlofsky
AI4CE
19
255
0
16 Aug 2019
On improving deep learning generalization with adaptive sparse connectivity
Shiwei Liu
D. Mocanu
Mykola Pechenizkiy
ODL
12
7
0
27 Jun 2019
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Nets
Amir-Reza Asadi
Emmanuel Abbe
BDL
AI4CE
31
13
0
26 Jun 2019
Learning to Forget for Meta-Learning
Sungyong Baik
Seokil Hong
Kyoung Mu Lee
CLL
KELM
14
87
0
13 Jun 2019
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
24
8
0
10 Jun 2019
PAC-Bayes Un-Expected Bernstein Inequality
Zakaria Mhammedi
Peter Grünwald
Benjamin Guedj
16
46
0
31 May 2019
Generalization bounds for deep convolutional neural networks
Philip M. Long
Hanie Sedghi
MLT
37
89
0
29 May 2019
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks
Gaël Letarte
Pascal Germain
Benjamin Guedj
Franccois Laviolette
MQ
AI4CE
UQCV
20
54
0
24 May 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
35
961
0
24 Jan 2019
Towards Theoretical Understanding of Large Batch Training in Stochastic Gradient Descent
Xiaowu Dai
Yuhua Zhu
17
11
0
03 Dec 2018
Neural Lander: Stable Drone Landing Control using Learned Dynamics
Guanya Shi
Xichen Shi
Michael O'Connell
Rose Yu
Kamyar Azizzadenesheli
Anima Anandkumar
Yisong Yue
Soon-Jo Chung
16
269
0
19 Nov 2018
Scalable agent alignment via reward modeling: a research direction
Jan Leike
David M. Krueger
Tom Everitt
Miljan Martic
Vishal Maini
Shane Legg
28
392
0
19 Nov 2018
Previous
1
2
3
4
Next