ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.02798
  4. Cited By
Bayesian Recurrent Neural Networks

Bayesian Recurrent Neural Networks

10 April 2017
Meire Fortunato
Charles Blundell
Oriol Vinyals
    BDL
ArXivPDFHTML

Papers citing "Bayesian Recurrent Neural Networks"

31 / 31 papers shown
Title
Humble your Overconfident Networks: Unlearning Overfitting via Sequential Monte Carlo Tempered Deep Ensembles
Humble your Overconfident Networks: Unlearning Overfitting via Sequential Monte Carlo Tempered Deep Ensembles
Andrew Millard
Zheng Zhao
Joshua Murphy
Simon Maskell
UQCV
BDL
50
0
0
16 May 2025
BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems
Zachary Chase Lipton
Xiujun Li
Jianfeng Gao
Lihong Li
Faisal Ahmed
Li Deng
49
171
0
15 Nov 2017
Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image
  Captioning
Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning
Jiasen Lu
Caiming Xiong
Devi Parikh
R. Socher
100
1,448
0
06 Dec 2016
Improved Image Captioning via Policy Gradient optimization of SPIDEr
Improved Image Captioning via Policy Gradient optimization of SPIDEr
Siqi Liu
Zhenhai Zhu
Ning Ye
S. Guadarrama
Kevin Patrick Murphy
116
444
0
01 Dec 2016
Scalable Bayesian Learning of Recurrent Neural Networks for Language
  Modeling
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan
Chunyuan Li
Changyou Chen
Yunchen Pu
Qinliang Su
Lawrence Carin
BDL
UQCV
71
41
0
23 Nov 2016
Google's Neural Machine Translation System: Bridging the Gap between
  Human and Machine Translation
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Zhiwen Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
788
6,768
0
26 Sep 2016
Pointer Sentinel Mixture Models
Pointer Sentinel Mixture Models
Stephen Merity
Caiming Xiong
James Bradbury
R. Socher
RALM
142
2,783
0
26 Sep 2016
Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning
  Challenge
Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge
Oriol Vinyals
Alexander Toshev
Samy Bengio
D. Erhan
56
852
0
21 Sep 2016
Stochastic Backpropagation through Mixture Density Distributions
Stochastic Backpropagation through Mixture Density Distributions
Alex Graves
BDL
74
44
0
19 Jul 2016
Recurrent Highway Networks
Recurrent Highway Networks
J. Zilly
R. Srivastava
Jan Koutník
Jürgen Schmidhuber
56
414
0
12 Jul 2016
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
71
2,000
0
14 Jun 2016
Learning to Optimize
Learning to Optimize
Ke Li
Jitendra Malik
38
256
0
06 Jun 2016
Exploring the Limits of Language Modeling
Exploring the Limits of Language Modeling
Rafal Jozefowicz
Oriol Vinyals
M. Schuster
Noam M. Shazeer
Yonghui Wu
93
1,143
0
07 Feb 2016
Distributed Bayesian Learning with Stochastic Natural-gradient
  Expectation Propagation and the Posterior Server
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
75
70
0
31 Dec 2015
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural
  Networks
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
58
325
0
23 Dec 2015
A Theoretically Grounded Application of Dropout in Recurrent Neural
  Networks
A Theoretically Grounded Application of Dropout in Recurrent Neural Networks
Y. Gal
Zoubin Ghahramani
UQCV
DRL
BDL
107
1,644
0
16 Dec 2015
Deep Speech 2: End-to-End Speech Recognition in English and Mandarin
Deep Speech 2: End-to-End Speech Recognition in English and Mandarin
Dario Amodei
Rishita Anubhai
Eric Battenberg
Carl Case
Jared Casper
...
Chong-Jun Wang
Bo Xiao
Dani Yogatama
J. Zhan
Zhenyao Zhu
93
2,965
0
08 Dec 2015
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
49
334
0
07 Nov 2015
Character-Aware Neural Language Models
Character-Aware Neural Language Models
Yoon Kim
Yacine Jernite
David Sontag
Alexander M. Rush
59
1,665
0
26 Aug 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
139
1,500
0
08 Jun 2015
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRL
BDL
61
1,250
0
07 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
431
9,233
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
102
1,878
0
20 May 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
60
940
0
18 Feb 2015
Probabilistic Line Searches for Stochastic Optimization
Probabilistic Line Searches for Stochastic Optimization
Maren Mahsereci
Philipp Hennig
ODL
42
126
0
10 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
632
149,474
0
22 Dec 2014
Variational Recurrent Auto-Encoders
Variational Recurrent Auto-Encoders
Otto Fabius
Joost R. van Amersfoort
GAN
BDL
DRL
47
245
0
20 Dec 2014
Learning Stochastic Recurrent Networks
Learning Stochastic Recurrent Networks
Justin Bayer
Christian Osendorfer
BDL
52
274
0
27 Nov 2014
Recurrent Neural Network Regularization
Recurrent Neural Network Regularization
Wojciech Zaremba
Ilya Sutskever
Oriol Vinyals
ODL
95
2,768
0
08 Sep 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
215
43,290
0
01 May 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
336
16,972
0
20 Dec 2013
1