ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.04289
  4. Cited By
Stochastic Gradient Descent as Approximate Bayesian Inference
v1v2 (latest)

Stochastic Gradient Descent as Approximate Bayesian Inference

13 April 2017
Stephan Mandt
Matthew D. Hoffman
David M. Blei
    BDL
ArXiv (abs)PDFHTML

Papers citing "Stochastic Gradient Descent as Approximate Bayesian Inference"

27 / 327 papers shown
Title
Averaging Weights Leads to Wider Optima and Better Generalization
Averaging Weights Leads to Wider Optima and Better Generalization
Pavel Izmailov
Dmitrii Podoprikhin
T. Garipov
Dmitry Vetrov
A. Wilson
FedMLMoMe
153
1,672
0
14 Mar 2018
WHAI: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling
WHAI: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling
Hao Zhang
Bo Chen
D. Guo
Mingyuan Zhou
BDL
80
118
0
04 Mar 2018
The Anisotropic Noise in Stochastic Gradient Descent: Its Behavior of
  Escaping from Sharp Minima and Regularization Effects
The Anisotropic Noise in Stochastic Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects
Zhanxing Zhu
Jingfeng Wu
Ting Yu
Lei Wu
Jin Ma
81
40
0
01 Mar 2018
A Walk with SGD
A Walk with SGD
Chen Xing
Devansh Arpit
Christos Tsirigotis
Yoshua Bengio
96
119
0
24 Feb 2018
An Alternative View: When Does SGD Escape Local Minima?
An Alternative View: When Does SGD Escape Local Minima?
Robert D. Kleinberg
Yuanzhi Li
Yang Yuan
MLT
95
317
0
17 Feb 2018
HiGrad: Uncertainty Quantification for Online Learning and Stochastic Approximation
HiGrad: Uncertainty Quantification for Online Learning and Stochastic Approximation
Weijie J. Su
Yuancheng Zhu
92
38
0
13 Feb 2018
Improving Generalization Performance by Switching from Adam to SGD
Improving Generalization Performance by Switching from Adam to SGD
N. Keskar
R. Socher
ODL
105
524
0
20 Dec 2017
Statistical Inference for the Population Landscape via Moment Adjusted
  Stochastic Gradients
Statistical Inference for the Population Landscape via Moment Adjusted Stochastic Gradients
Tengyuan Liang
Weijie Su
72
21
0
20 Dec 2017
Vprop: Variational Inference using RMSprop
Vprop: Variational Inference using RMSprop
Mohammad Emtiyaz Khan
Zuozhu Liu
Voot Tangkaratt
Y. Gal
BDL
73
17
0
04 Dec 2017
Asymptotic Analysis via Stochastic Differential Equations of Gradient
  Descent Algorithms in Statistical and Computational Paradigms
Asymptotic Analysis via Stochastic Differential Equations of Gradient Descent Algorithms in Statistical and Computational Paradigms
Yazhen Wang
87
17
0
27 Nov 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
230
698
0
15 Nov 2017
Three Factors Influencing Minima in SGD
Three Factors Influencing Minima in SGD
Stanislaw Jastrzebski
Zachary Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
85
463
0
13 Nov 2017
Don't Decay the Learning Rate, Increase the Batch Size
Don't Decay the Learning Rate, Increase the Batch Size
Samuel L. Smith
Pieter-Jan Kindermans
Chris Ying
Quoc V. Le
ODL
130
996
0
01 Nov 2017
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
160
1,100
0
01 Nov 2017
Fraternal Dropout
Fraternal Dropout
Konrad Zolna
Devansh Arpit
Dendi Suhubdy
Yoshua Bengio
69
53
0
31 Oct 2017
Techreport: Time-sensitive probabilistic inference for the edge
Techreport: Time-sensitive probabilistic inference for the edge
Christian D. Weilbach
Annette Bieniusa
46
0
0
30 Oct 2017
Stochastic gradient descent performs variational inference, converges to
  limit cycles for deep networks
Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks
Pratik Chaudhari
Stefano Soatto
MLT
104
304
0
30 Oct 2017
A Bayesian Perspective on Generalization and Stochastic Gradient Descent
A Bayesian Perspective on Generalization and Stochastic Gradient Descent
Samuel L. Smith
Quoc V. Le
BDL
126
253
0
17 Oct 2017
Regularizing and Optimizing LSTM Language Models
Regularizing and Optimizing LSTM Language Models
Stephen Merity
N. Keskar
R. Socher
178
1,098
0
07 Aug 2017
Bridging the Gap between Constant Step Size Stochastic Gradient Descent
  and Markov Chains
Bridging the Gap between Constant Step Size Stochastic Gradient Descent and Markov Chains
Aymeric Dieuleveut
Alain Durmus
Francis R. Bach
89
156
0
20 Jul 2017
Acceleration and Averaging in Stochastic Mirror Descent Dynamics
Acceleration and Averaging in Stochastic Mirror Descent Dynamics
Walid Krichene
Peter L. Bartlett
38
10
0
19 Jul 2017
Statistical inference using SGD
Statistical inference using SGD
Tianyang Li
Liu Liu
Anastasios Kyrillidis
Constantine Caramanis
FedML
48
38
0
21 May 2017
Determinantal Point Processes for Mini-Batch Diversification
Determinantal Point Processes for Mini-Batch Diversification
Cheng Zhang
Hedvig Kjellström
Stephan Mandt
85
35
0
01 May 2017
Introspective Generative Modeling: Decide Discriminatively
Introspective Generative Modeling: Decide Discriminatively
Justin Lazarow
Long Jin
Zhuowen Tu
31
2
0
25 Apr 2017
Introspective Classification with Convolutional Nets
Introspective Classification with Convolutional Nets
Long Jin
Justin Lazarow
Zhuowen Tu
BDL
24
2
0
25 Apr 2017
Efficient variational Bayesian neural network ensembles for outlier
  detection
Efficient variational Bayesian neural network ensembles for outlier detection
Nick Pawlowski
Miguel Jaques
Ben Glocker
BDLUQCV
47
13
0
20 Mar 2017
Statistics of Robust Optimization: A Generalized Empirical Likelihood
  Approach
Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach
John C. Duchi
Peter Glynn
Hongseok Namkoong
142
325
0
11 Oct 2016
Previous
1234567