Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.04289
Cited By
v1
v2 (latest)
Stochastic Gradient Descent as Approximate Bayesian Inference
13 April 2017
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Stochastic Gradient Descent as Approximate Bayesian Inference"
50 / 327 papers shown
Title
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
97
144
0
17 Jul 2019
Neural ODEs as the Deep Limit of ResNets with constant weights
B. Avelin
K. Nystrom
ODL
141
32
0
28 Jun 2019
On the interplay between noise and curvature and its effect on optimization and generalization
Valentin Thomas
Fabian Pedregosa
B. V. Merrienboer
Pierre-Antoine Mangazol
Yoshua Bengio
Nicolas Le Roux
62
61
0
18 Jun 2019
On the Noisy Gradient Descent that Generalizes as SGD
Jingfeng Wu
Wenqing Hu
Haoyi Xiong
Jun Huan
Vladimir Braverman
Zhanxing Zhu
MLT
73
10
0
18 Jun 2019
Adaptively Preconditioned Stochastic Gradient Langevin Dynamics
C. A. Bhardwaj
ODL
21
9
0
10 Jun 2019
Improving Neural Language Modeling via Adversarial Training
Dilin Wang
Chengyue Gong
Qiang Liu
AAML
115
119
0
10 Jun 2019
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDL
UQCV
167
247
0
06 Jun 2019
Replica-exchange Nosé-Hoover dynamics for Bayesian learning on large datasets
Rui Luo
Qiang Zhang
Yaodong Yang
Jun Wang
BDL
71
3
0
29 May 2019
Structural Equation Models as Computation Graphs
E. V. Kesteren
Daniel L. Oberski
15
1
0
11 May 2019
The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study
Daniel S. Park
Jascha Narain Sohl-Dickstein
Quoc V. Le
Samuel L. Smith
96
57
0
09 May 2019
A Generative Model for Sampling High-Performance and Diverse Weights for Neural Networks
Lior Deutsch
Erik Nijkamp
Yu Yang
71
16
0
07 May 2019
Differentiable Visual Computing
Tzu-Mao Li
54
15
0
27 Apr 2019
Some Limit Properties of Markov Chains Induced by Stochastic Recursive Algorithms
Abhishek Gupta
Hao Chen
Jianzong Pi
Gaurav Tendolkar
28
0
0
24 Apr 2019
Bayesian Neural Networks at Finite Temperature
R. Baldock
Nicola Marzari
40
3
0
08 Apr 2019
Data Augmentation for Bayesian Deep Learning
YueXing Wang
Nicholas G. Polson
Vadim Sokolov
UQCV
BDL
85
5
0
22 Mar 2019
Theoretical guarantees for sampling and inference in generative models with latent diffusions
Belinda Tzen
Maxim Raginsky
DiffM
76
102
0
05 Mar 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
73
22
0
21 Feb 2019
Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges
Di Feng
Christian Haase-Schuetz
Lars Rosenbaum
Heinz Hertlein
Claudius Gläser
Fabian Duffhauss
W. Wiesbeck
Klaus C. J. Dietmayer
3DPC
169
1,014
0
21 Feb 2019
Generalisation in fully-connected neural networks for time series forecasting
Anastasia Borovykh
C. Oosterlee
S. Bohté
OOD
AI4TS
46
3
0
14 Feb 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
140
810
0
07 Feb 2019
Stochastic Zeroth-order Discretizations of Langevin Diffusions for Bayesian Inference
Abhishek Roy
Lingqing Shen
Krishnakumar Balasubramanian
Saeed Ghadimi
94
6
0
04 Feb 2019
Quantitative Weak Convergence for Discrete Stochastic Processes
Xiang Cheng
Peter L. Bartlett
Michael I. Jordan
36
5
0
03 Feb 2019
Uniform-in-Time Weak Error Analysis for Stochastic Gradient Descent Algorithms via Diffusion Approximation
Yuanyuan Feng
Tingran Gao
Lei Li
Jian‐Guo Liu
Yulong Lu
63
25
0
02 Feb 2019
Quasi-potential as an implicit regularizer for the loss function in the stochastic gradient descent
Wenqing Hu
Zhanxing Zhu
Haoyi Xiong
Jun Huan
MLT
54
10
0
18 Jan 2019
A continuous-time analysis of distributed stochastic gradient
Nicholas M. Boffi
Jean-Jacques E. Slotine
46
15
0
28 Dec 2018
An Empirical Model of Large-Batch Training
Sam McCandlish
Jared Kaplan
Dario Amodei
OpenAI Dota Team
76
280
0
14 Dec 2018
Towards Theoretical Understanding of Large Batch Training in Stochastic Gradient Descent
Xiaowu Dai
Yuhua Zhu
75
11
0
03 Dec 2018
Understanding the impact of entropy on policy optimization
Zafarali Ahmed
Nicolas Le Roux
Mohammad Norouzi
Dale Schuurmans
83
238
0
27 Nov 2018
Practical Bayesian Learning of Neural Networks via Adaptive Optimisation Methods
Caroline Werther
M. Ferguson
K. Park
Cuixian Chen
Stephen J. Roberts
ODL
21
4
0
08 Nov 2018
Stochastic Modified Equations and Dynamics of Stochastic Gradient Algorithms I: Mathematical Foundations
Qianxiao Li
Cheng Tai
E. Weinan
124
150
0
05 Nov 2018
A Gaussian Process perspective on Convolutional Neural Networks
Anastasia Borovykh
81
19
0
25 Oct 2018
Rate Distortion For Model Compression: From Theory To Practice
Weihao Gao
Yu-Han Liu
Chong-Jun Wang
Sewoong Oh
86
31
0
09 Oct 2018
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
119
32
0
05 Oct 2018
Fluctuation-dissipation relations for stochastic gradient descent
Sho Yaida
113
75
0
28 Sep 2018
Compositional Stochastic Average Gradient for Machine Learning and Related Applications
Tsung-Yu Hsieh
Y. El-Manzalawy
Yiwei Sun
Vasant Honavar
44
1
0
04 Sep 2018
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
123
432
0
22 Aug 2018
Deep Convolutional Networks as shallow Gaussian Processes
Adrià Garriga-Alonso
C. Rasmussen
Laurence Aitchison
BDL
UQCV
116
271
0
16 Aug 2018
Bayesian filtering unifies adaptive and non-adaptive neural network optimization methods
Laurence Aitchison
ODL
109
21
0
19 Jul 2018
TherML: Thermodynamics of Machine Learning
Alexander A. Alemi
Ian S. Fischer
DRL
AI4CE
58
29
0
11 Jul 2018
Quasi-Monte Carlo Variational Inference
Alexander K. Buchholz
F. Wenzel
Stephan Mandt
BDL
105
60
0
04 Jul 2018
Stochastic natural gradient descent draws posterior samples in function space
Samuel L. Smith
Daniel Duckworth
Semon Rezchikov
Quoc V. Le
Jascha Narain Sohl-Dickstein
BDL
85
6
0
25 Jun 2018
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
172
1,462
0
22 Jun 2018
Laplacian Smoothing Gradient Descent
Stanley Osher
Bao Wang
Penghang Yin
Xiyang Luo
Farzin Barekat
Minh Pham
A. Lin
ODL
113
43
0
17 Jun 2018
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
Ben Athiwaratkun
Marc Finzi
Pavel Izmailov
A. Wilson
281
244
0
14 Jun 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
194
271
0
13 Jun 2018
Scalable Natural Gradient Langevin Dynamics in Practice
Henri Palacci
H. Hess
BDL
30
8
0
07 Jun 2018
Deep learning generalizes because the parameter-function map is biased towards simple functions
Guillermo Valle Pérez
Chico Q. Camargo
A. Louis
MLT
AI4CE
122
232
0
22 May 2018
Classifier-agnostic saliency map extraction
Konrad Zolna
Krzysztof J. Geras
Kyunghyun Cho
78
29
0
21 May 2018
SmoothOut: Smoothing Out Sharp Minima to Improve Generalization in Deep Learning
W. Wen
Yandan Wang
Feng Yan
Cong Xu
Chunpeng Wu
Yiran Chen
H. Li
79
51
0
21 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
192
561
0
30 Apr 2018
Previous
1
2
3
4
5
6
7
Next