Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.04289
Cited By
v1
v2 (latest)
Stochastic Gradient Descent as Approximate Bayesian Inference
13 April 2017
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Stochastic Gradient Descent as Approximate Bayesian Inference"
50 / 327 papers shown
Title
Distributional Training Data Attribution
Bruno Mlodozeniec
Isaac Reid
Sam Power
David M. Krueger
Murat Erdogdu
Richard E. Turner
Roger B. Grosse
TDI
OOD
40
0
0
15 Jun 2025
SGD as Free Energy Minimization: A Thermodynamic View on Neural Network Training
Ildus Sadrtdinov
Ivan Klimov
E. Lobacheva
Dmitry Vetrov
28
0
0
29 May 2025
PADAM: Parallel averaged Adam reduces the error for stochastic optimization in scientific machine learning
Arnulf Jentzen
Julian Kranz
Adrian Riekert
ODL
43
0
0
28 May 2025
A Unified Gradient-based Framework for Task-agnostic Continual Learning-Unlearning
Zhehao Huang
Xinwen Cheng
Jing Zhang
Jinghao Zheng
Haoran Wang
Zhengbao He
Tao Li
Xiaolin Huang
CLL
85
1
0
21 May 2025
Seeking Flat Minima over Diverse Surrogates for Improved Adversarial Transferability: A Theoretical Framework and Algorithmic Instantiation
Meixi Zheng
Kehan Wu
Yanbo Fan
Rui Huang
Baoyuan Wu
AAML
74
0
0
23 Apr 2025
Bayesian Pseudo Posterior Mechanism for Differentially Private Machine Learning
Robert Chew
Matthew R. Williams
Elan A. Segarra
Alexander J. Preiss
Amanda Konet
T. Savitsky
81
0
0
27 Mar 2025
On Local Posterior Structure in Deep Ensembles
Mikkel Jordahn
Jonas Vestergaard Jensen
Mikkel N. Schmidt
Michael Riis Andersen
UQCV
BDL
OOD
149
0
0
17 Mar 2025
Entropy-regularized Gradient Estimators for Approximate Bayesian Inference
Jasmeet Kaur
BDL
UQCV
124
0
0
15 Mar 2025
NoT: Federated Unlearning via Weight Negation
Yasser H. Khalil
Leo Maxime Brunswic
Soufiane Lamghari
Xu Li
Mahdi Beitollahi
Xi Chen
MU
127
2
0
07 Mar 2025
Generative Uncertainty in Diffusion Models
Metod Jazbec
Eliot Wong-Toi
Guoxuan Xia
Dan Zhang
Eric T. Nalisnick
Stephan Mandt
DiffM
127
1
0
28 Feb 2025
Reinforcement Teaching
Alex Lewandowski
Calarina Muslimani
Dale Schuurmans
Matthew E. Taylor
Jun Luo
192
2
0
28 Jan 2025
Soft Condorcet Optimization for Ranking of General Agents
Marc Lanctot
Kate Larson
Michael Kaisers
Quentin Berthet
I. Gemp
Manfred Diaz
Roberto-Rafael Maura-Rivero
Yoram Bachrach
Anna Koop
Doina Precup
270
0
0
31 Oct 2024
Bayes without Underfitting: Fully Correlated Deep Learning Posteriors via Alternating Projections
M. Miani
Hrittik Roy
Søren Hauberg
UQCV
BDL
112
0
0
22 Oct 2024
Influential Language Data Selection via Gradient Trajectory Pursuit
Zhiwei Deng
Tao Li
Yang Li
62
1
0
22 Oct 2024
Understanding Adversarially Robust Generalization via Weight-Curvature Index
Yuelin Xu
Xiao Zhang
AAML
61
0
0
10 Oct 2024
Robust Adaptation of Foundation Models with Black-Box Visual Prompting
Changdae Oh
Gyeongdeok Seo
Geunyoung Jung
Zhi-Qi Cheng
Hosik Choi
Jiyoung Jung
Kyungwoo Song
VLM
125
1
0
04 Jul 2024
On the Trade-off between Flatness and Optimization in Distributed Learning
Ying Cao
Zhaoxian Wu
Kun Yuan
Ali H. Sayed
103
1
0
28 Jun 2024
Effect of Random Learning Rate: Theoretical Analysis of SGD Dynamics in Non-Convex Optimization via Stationary Distribution
Naoki Yoshida
Shogo H. Nakakita
Masaaki Imaizumi
62
1
0
23 Jun 2024
Do Parameters Reveal More than Loss for Membership Inference?
Anshuman Suri
Xiao Zhang
David Evans
MIACV
MIALM
AAML
92
1
0
17 Jun 2024
Score-based Generative Models with Adaptive Momentum
Ziqing Wen
Xiaoge Deng
Ping Luo
Tao Sun
Dongsheng Li
DiffM
57
0
0
22 May 2024
UPAM: Unified Prompt Attack in Text-to-Image Generation Models Against Both Textual Filters and Visual Checkers
Duo Peng
Qi Ke
Jun Liu
83
4
0
18 May 2024
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics
Haoyang Zheng
Hengrong Du
Qi Feng
Wei Deng
Guang Lin
65
5
0
13 May 2024
Variational Stochastic Gradient Descent for Deep Neural Networks
Haotian Chen
Anna Kuzina
Babak Esmaeili
Jakub M. Tomczak
106
0
0
09 Apr 2024
Upper Bound of Bayesian Generalization Error in Partial Concept Bottleneck Model (CBM): Partial CBM outperforms naive CBM
Naoki Hayashi
Yoshihide Sawada
70
1
0
14 Mar 2024
Scalable Bayesian inference for the generalized linear mixed model
S. Berchuck
Felipe A. Medeiros
Sayan Mukherjee
Andrea Agazzi
65
0
0
05 Mar 2024
Batch size invariant Adam
Xi Wang
Laurence Aitchison
87
2
0
29 Feb 2024
Pre-training Differentially Private Models with Limited Public Data
Zhiqi Bu
Xinwei Zhang
Mingyi Hong
Sheng Zha
George Karypis
114
4
0
28 Feb 2024
Diffusion Models as Constrained Samplers for Optimization with Unknown Constraints
Lingkai Kong
Yuanqi Du
Wenhao Mu
Kirill Neklyudov
Valentin De Bortol
...
D. Wu
Aaron Ferber
Yi-An Ma
Carla P. Gomes
Chao Zhang
82
13
0
28 Feb 2024
Stochastic Gradient Flow Dynamics of Test Risk and its Exact Solution for Weak Features
Rodrigo Veiga
Anastasia Remizova
Nicolas Macris
74
1
0
12 Feb 2024
On the Impact of Output Perturbation on Fairness in Binary Linear Classification
Vitalii Emelianov
Michael Perrot
FaML
98
0
0
05 Feb 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
133
35
0
01 Feb 2024
RADIN: Souping on a Budget
Thibaut Menes
Olivier Risser-Maroix
MoMe
104
1
0
31 Jan 2024
Querying Easily Flip-flopped Samples for Deep Active Learning
S. Cho
G. Kim
Junghyun Lee
Jinwoo Shin
Chang D. Yoo
96
6
0
18 Jan 2024
Stabilizing Sharpness-aware Minimization Through A Simple Renormalization Strategy
Chengli Tan
Jiangshe Zhang
Junmin Liu
Yicheng Wang
Yunda Hao
AAML
73
2
0
14 Jan 2024
DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid Neural Modeling
Deepak Akhare
Tengfei Luo
Jian-Xun Wang
74
6
0
30 Dec 2023
Learning to Infer Unobserved Behaviors: Estimating User's Preference for a Site over Other Sites
Atanu R. Sinha
Tanay Anand
Paridhi Maheshwari
A. V. Lakshmy
Vishal Jain
18
0
0
15 Dec 2023
Fusing Multiple Algorithms for Heterogeneous Online Learning
D. Gadginmath
Shivanshu Tripathi
Fabio Pasqualetti
FedML
40
1
0
09 Dec 2023
Weight fluctuations in (deep) linear neural networks and a derivation of the inverse-variance flatness relation
Markus Gross
A. Raulf
Christoph Räth
110
0
0
23 Nov 2023
Trustworthy Large Models in Vision: A Survey
Ziyan Guo
Li Xu
Jun Liu
MU
126
0
0
16 Nov 2023
Signal Processing Meets SGD: From Momentum to Filter
Zhipeng Yao
Guisong Chang
Jiaqi Zhang
Qi Zhang
Dazhou Li
Yu Zhang
ODL
105
0
0
06 Nov 2023
Seeking Flat Minima with Mean Teacher on Semi- and Weakly-Supervised Domain Generalization for Object Detection
Ryosuke Furuta
Yoichi Sato
104
0
0
30 Oct 2023
On the accuracy and efficiency of group-wise clipping in differentially private optimization
Zhiqi Bu
Ruixuan Liu
Yu Wang
Sheng Zha
George Karypis
VLM
66
4
0
30 Oct 2023
Out-of-distribution Object Detection through Bayesian Uncertainty Estimation
Tianhao Zhang
Shenglin Wang
N. Bouaynaya
R. Calinescu
Lyudmila Mihaylova
OODD
64
2
0
29 Oct 2023
Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression
Adam Block
Dylan J. Foster
Akshay Krishnamurthy
Max Simchowitz
Cyril Zhang
75
7
0
17 Oct 2023
On permutation symmetries in Bayesian neural network posteriors: a variational perspective
Simone Rossi
Ankit Singh
T. Hannagan
69
3
0
16 Oct 2023
Approximating Nash Equilibria in Normal-Form Games via Stochastic Optimization
I. Gemp
Luke Marris
Georgios Piliouras
81
9
0
10 Oct 2023
Coupling public and private gradient provably helps optimization
Ruixuan Liu
Zhiqi Bu
Yu Wang
Sheng Zha
George Karypis
73
2
0
02 Oct 2023
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
103
20
0
28 Sep 2023
On the different regimes of Stochastic Gradient Descent
Antonio Sclocchi
Matthieu Wyart
71
20
0
19 Sep 2023
MFRL-BI: Design of a Model-free Reinforcement Learning Process Control Scheme by Using Bayesian Inference
Yanrong Li
Juan Du
Wei Jiang
32
1
0
17 Sep 2023
1
2
3
4
5
6
7
Next