ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.07832
  4. Cited By
Concrete Dropout

Concrete Dropout

22 May 2017
Y. Gal
Jiri Hron
Alex Kendall
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Concrete Dropout"

50 / 133 papers shown
Title
Fast online inference for nonlinear contextual bandit based on
  Generative Adversarial Network
Fast online inference for nonlinear contextual bandit based on Generative Adversarial Network
Yun-Da Tsai
Shou-De Lin
43
5
0
17 Feb 2022
A deep mixture density network for outlier-corrected interpolation of
  crowd-sourced weather data
A deep mixture density network for outlier-corrected interpolation of crowd-sourced weather data
Charlie Kirkwood
T. Economou
H. Odbert
N. Pugeault
15
0
0
25 Jan 2022
Improving Subgraph Recognition with Variational Graph Information
  Bottleneck
Improving Subgraph Recognition with Variational Graph Information Bottleneck
Junchi Yu
Jie Cao
Ran He
22
53
0
18 Dec 2021
Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation
Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation
Volodymyr Kuleshov
Shachi Deshpande
UQCV
BDL
38
33
0
14 Dec 2021
Probabilistic Approach for Road-Users Detection
Probabilistic Approach for Road-Users Detection
Gledson Melotti
Weihao Lu
Pedro Conde
Dezong Zhao
A. Asvadi
Nuno Gonçalves
C. Premebida
27
2
0
02 Dec 2021
Uncertainty Aware Proposal Segmentation for Unknown Object Detection
Uncertainty Aware Proposal Segmentation for Unknown Object Detection
Yimeng Li
Jana Kosecka
UQCV
36
19
0
25 Nov 2021
MC-CIM: Compute-in-Memory with Monte-Carlo Dropouts for Bayesian Edge
  Intelligence
MC-CIM: Compute-in-Memory with Monte-Carlo Dropouts for Bayesian Edge Intelligence
Priyesh Shukla
Shamma Nasrin
Nastaran Darabi
Wilfred Gomes
A. R. Trivedi
28
17
0
13 Nov 2021
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent
  Advances and Applications
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCV
UD
24
58
0
03 Nov 2021
Which Model to Trust: Assessing the Influence of Models on the
  Performance of Reinforcement Learning Algorithms for Continuous Control Tasks
Which Model to Trust: Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms for Continuous Control Tasks
Giacomo Arcieri
David Wölfle
Eleni Chatzi
OffRL
27
5
0
25 Oct 2021
Pathologies in priors and inference for Bayesian transformers
Pathologies in priors and inference for Bayesian transformers
Tristan Cinquin
Alexander Immer
Max Horn
Vincent Fortuin
UQCV
BDL
MedIm
34
9
0
08 Oct 2021
Propagating State Uncertainty Through Trajectory Forecasting
Propagating State Uncertainty Through Trajectory Forecasting
Boris Ivanovic
Yifeng Lin
Shubham Shrivastava
Punarjay Chakravarty
Marco Pavone
78
18
0
07 Oct 2021
Probabilistic Metamodels for an Efficient Characterization of Complex
  Driving Scenarios
Probabilistic Metamodels for an Efficient Characterization of Complex Driving Scenarios
Max Winkelmann
Mike Kohlhoff
H. Tadjine
Steffen Müller
29
9
0
06 Oct 2021
Dropout Q-Functions for Doubly Efficient Reinforcement Learning
Dropout Q-Functions for Doubly Efficient Reinforcement Learning
Takuya Hiraoka
Takahisa Imagawa
Taisei Hashimoto
Takashi Onishi
Yoshimasa Tsuruoka
11
104
0
05 Oct 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
28
93
0
04 Oct 2021
Introspective Robot Perception using Smoothed Predictions from Bayesian
  Neural Networks
Introspective Robot Perception using Smoothed Predictions from Bayesian Neural Networks
Jianxiang Feng
M. Durner
Zoltán-Csaba Márton
Ferenc Bálint-Benczédi
Rudolph Triebel
UQCV
BDL
13
11
0
27 Sep 2021
A framework for benchmarking uncertainty in deep regression
A framework for benchmarking uncertainty in deep regression
F. Schmähling
Jörg Martin
Clemens Elster
UQCV
38
8
0
10 Sep 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
63
73
0
09 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
59
1,111
0
07 Jul 2021
Improving Uncertainty Calibration of Deep Neural Networks via Truth
  Discovery and Geometric Optimization
Improving Uncertainty Calibration of Deep Neural Networks via Truth Discovery and Geometric Optimization
Chunwei Ma
Ziyun Huang
Jiayi Xian
Mingchen Gao
Jinhui Xu
UQCV
33
14
0
25 Jun 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
21
31
0
09 Jun 2021
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
AI4CE
19
5
0
04 Jun 2021
Quantifying Uncertainty in Deep Spatiotemporal Forecasting
Quantifying Uncertainty in Deep Spatiotemporal Forecasting
Dongxian Wu
Liyao (Mars) Gao
X. Xiong
Matteo Chinazzi
Alessandro Vespignani
Yi Ma
Rose Yu
AI4TS
13
68
0
25 May 2021
Correlated Input-Dependent Label Noise in Large-Scale Image
  Classification
Correlated Input-Dependent Label Noise in Large-Scale Image Classification
Mark Collier
Basil Mustafa
Efi Kokiopoulou
Rodolphe Jenatton
Jesse Berent
NoLa
181
53
0
19 May 2021
Learning Uncertainty with Artificial Neural Networks for Improved
  Remaining Time Prediction of Business Processes
Learning Uncertainty with Artificial Neural Networks for Improved Remaining Time Prediction of Business Processes
Hans Weytjens
Jochen De Weerdt
BDL
25
8
0
12 May 2021
Heterogeneous-Agent Trajectory Forecasting Incorporating Class
  Uncertainty
Heterogeneous-Agent Trajectory Forecasting Incorporating Class Uncertainty
Boris Ivanovic
Kuan-Hui Lee
P. Tokmakov
Blake Wulfe
R. McAllister
Adrien Gaidon
Marco Pavone
22
35
0
26 Apr 2021
Beyond Trivial Counterfactual Explanations with Diverse Valuable
  Explanations
Beyond Trivial Counterfactual Explanations with Diverse Valuable Explanations
Pau Rodríguez López
Massimo Caccia
Alexandre Lacoste
L. Zamparo
I. Laradji
Laurent Charlin
David Vazquez
AAML
37
55
0
18 Mar 2021
Contextual Dropout: An Efficient Sample-Dependent Dropout Module
Contextual Dropout: An Efficient Sample-Dependent Dropout Module
Xinjie Fan
Shujian Zhang
Korawat Tanwisuth
Xiaoning Qian
Mingyuan Zhou
OOD
BDL
UQCV
30
27
0
06 Mar 2021
Uncertainty Quantification by Ensemble Learning for Computational
  Optical Form Measurements
Uncertainty Quantification by Ensemble Learning for Computational Optical Form Measurements
L. Hoffmann
I. Fortmeier
Clemens Elster
UQCV
25
28
0
01 Mar 2021
LocalDrop: A Hybrid Regularization for Deep Neural Networks
LocalDrop: A Hybrid Regularization for Deep Neural Networks
Ziqing Lu
Chang Xu
Bo Du
Takashi Ishida
Lefei Zhang
Masashi Sugiyama
33
14
0
01 Mar 2021
DeepGLEAM: A hybrid mechanistic and deep learning model for COVID-19
  forecasting
DeepGLEAM: A hybrid mechanistic and deep learning model for COVID-19 forecasting
Dongxian Wu
Liyao (Mars) Gao
X. Xiong
Matteo Chinazzi
Alessandro Vespignani
Yi Ma
Rose Yu
FedML
22
27
0
12 Feb 2021
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey
  of Emerging Trends
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey of Emerging Trends
Q. Rahman
Peter Corke
Feras Dayoub
OOD
29
51
0
05 Jan 2021
On Batch Normalisation for Approximate Bayesian Inference
On Batch Normalisation for Approximate Bayesian Inference
Jishnu Mukhoti
P. Dokania
Philip Torr
Y. Gal
BDL
UQCV
29
4
0
24 Dec 2020
Learning Prediction Intervals for Model Performance
Learning Prediction Intervals for Model Performance
Benjamin Elder
Matthew Arnold
Anupama Murthi
Jirí Navrátil
19
10
0
15 Dec 2020
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
24
223
0
20 Nov 2020
Predictive Monitoring with Logic-Calibrated Uncertainty for
  Cyber-Physical Systems
Predictive Monitoring with Logic-Calibrated Uncertainty for Cyber-Physical Systems
Meiyi Ma
John A. Stankovic
E. Bartocci
Lu Feng
26
24
0
31 Oct 2020
Bayesian Attention Modules
Bayesian Attention Modules
Xinjie Fan
Shujian Zhang
Bo Chen
Mingyuan Zhou
117
59
0
20 Oct 2020
Perceiving Humans: from Monocular 3D Localization to Social Distancing
Perceiving Humans: from Monocular 3D Localization to Social Distancing
Lorenzo Bertoni
S. Kreiss
Alexandre Alahi
31
46
0
01 Sep 2020
Vision-Based Goal-Conditioned Policies for Underwater Navigation in the
  Presence of Obstacles
Vision-Based Goal-Conditioned Policies for Underwater Navigation in the Presence of Obstacles
Travis Manderson
J. A. G. Higuera
Stefan Wapnick
J. Tremblay
Florian Shkurti
D. Meger
Gregory Dudek
19
50
0
29 Jun 2020
Unlabelled Data Improves Bayesian Uncertainty Calibration under
  Covariate Shift
Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift
Alex J. Chan
Ahmed Alaa
Zhaozhi Qian
M. Schaar
UQCV
BDL
OOD
28
38
0
26 Jun 2020
Bayesian Neural Networks: An Introduction and Survey
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
35
199
0
22 Jun 2020
Calibration of Model Uncertainty for Dropout Variational Inference
Calibration of Model Uncertainty for Dropout Variational Inference
M. Laves
Sontje Ihler
Karl-Philipp Kortmann
T. Ortmaier
BDL
UQCV
32
18
0
20 Jun 2020
Detecting unusual input to neural networks
Detecting unusual input to neural networks
Jörg Martin
Clemens Elster
AAML
17
7
0
15 Jun 2020
UFO-BLO: Unbiased First-Order Bilevel Optimization
UFO-BLO: Unbiased First-Order Bilevel Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
32
7
0
05 Jun 2020
Designing Accurate Emulators for Scientific Processes using
  Calibration-Driven Deep Models
Designing Accurate Emulators for Scientific Processes using Calibration-Driven Deep Models
Jayaraman J. Thiagarajan
Bindya Venkatesh
Rushil Anirudh
P. Bremer
J. Gaffney
G. Anderson
B. Spears
13
21
0
05 May 2020
A Simple Probabilistic Method for Deep Classification under
  Input-Dependent Label Noise
A Simple Probabilistic Method for Deep Classification under Input-Dependent Label Noise
Mark Collier
Basil Mustafa
Efi Kokiopoulou
Rodolphe Jenatton
Jesse Berent
UQCV
NoLa
41
0
0
15 Mar 2020
Estimating Uncertainty Intervals from Collaborating Networks
Estimating Uncertainty Intervals from Collaborating Networks
Tianhui Zhou
Yitong Li
Yuan Wu
David Carlson
UQCV
27
15
0
12 Feb 2020
Uncertainty-Based Out-of-Distribution Classification in Deep
  Reinforcement Learning
Uncertainty-Based Out-of-Distribution Classification in Deep Reinforcement Learning
Andreas Sedlmeier
Thomas Gabor
Thomy Phan
Lenz Belzner
Claudia Linnhoff-Popien
21
25
0
31 Dec 2019
TRADI: Tracking deep neural network weight distributions for uncertainty
  estimation
TRADI: Tracking deep neural network weight distributions for uncertainty estimation
Gianni Franchi
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
Isabelle Bloch
UQCV
26
51
0
24 Dec 2019
Angular Visual Hardness
Angular Visual Hardness
Beidi Chen
Weiyang Liu
Zhiding Yu
Jan Kautz
Anshumali Shrivastava
Animesh Garg
Anima Anandkumar
AAML
43
51
0
04 Dec 2019
Learning with Multiplicative Perturbations
Learning with Multiplicative Perturbations
Xiulong Yang
Shihao Ji
AAML
30
4
0
04 Dec 2019
Previous
123
Next