Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.03825
Cited By
SmoothGrad: removing noise by adding noise
12 June 2017
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SmoothGrad: removing noise by adding noise"
50 / 1,161 papers shown
Title
¶
¶
¶
ILCRO: Making Importance Landscapes Flat Again
Vincent Moens
Simiao Yu
G. Salimi-Khorshidi
9
0
0
27 Jan 2020
Learning Preference-Based Similarities from Face Images using Siamese Multi-Task CNNs
N. Gessert
Alexander Schlaefer
CVBM
18
1
0
25 Jan 2020
SAUNet: Shape Attentive U-Net for Interpretable Medical Image Segmentation
Jesse Sun
Fatemeh Darbeha
M. Zaidi
Bo Wang
AAML
19
110
0
21 Jan 2020
An Adversarial Approach for the Robust Classification of Pneumonia from Chest Radiographs
Joseph D. Janizek
G. Erion
A. DeGrave
Su-In Lee
OOD
MedIm
30
29
0
13 Jan 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
Restricting the Flow: Information Bottlenecks for Attribution
Karl Schulz
Leon Sixt
Federico Tombari
Tim Landgraf
FAtt
14
182
0
02 Jan 2020
When Explanations Lie: Why Many Modified BP Attributions Fail
Leon Sixt
Maximilian Granz
Tim Landgraf
BDL
FAtt
XAI
13
132
0
20 Dec 2019
Explaining Classifiers using Adversarial Perturbations on the Perceptual Ball
Andrew Elliott
Stephen Law
Chris Russell
AAML
12
4
0
19 Dec 2019
Exploratory Not Explanatory: Counterfactual Analysis of Saliency Maps for Deep Reinforcement Learning
Akanksha Atrey
Kaleigh Clary
David D. Jensen
FAtt
LRM
19
90
0
09 Dec 2019
An Empirical Study on the Relation between Network Interpretability and Adversarial Robustness
Adam Noack
Isaac Ahern
Dejing Dou
Boyang Albert Li
OOD
AAML
18
10
0
07 Dec 2019
A Step Towards Exposing Bias in Trained Deep Convolutional Neural Network Models
Daniel Omeiza
FAtt
16
0
0
03 Dec 2019
Automated Dependence Plots
David I. Inouye
Liu Leqi
Joon Sik Kim
Bryon Aragam
Pradeep Ravikumar
12
1
0
02 Dec 2019
A Programmatic and Semantic Approach to Explaining and DebuggingNeural Network Based Object Detectors
Edward J. Kim
D. Gopinath
C. Păsăreanu
S. Seshia
10
26
0
01 Dec 2019
Attributional Robustness Training using Input-Gradient Spatial Alignment
M. Singh
Nupur Kumari
Puneet Mangla
Abhishek Sinha
V. Balasubramanian
Balaji Krishnamurthy
OOD
29
10
0
29 Nov 2019
A Case for the Score: Identifying Image Anomalies using Variational Autoencoder Gradients
David Zimmerer
Jens Petersen
Simon A. A. Kohl
Klaus H. Maier-Hein
DRL
11
22
0
28 Nov 2019
Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
Vanessa Buhrmester
David Münch
Michael Arens
MLAU
FaML
XAI
AAML
21
354
0
27 Nov 2019
Hearing Lips: Improving Lip Reading by Distilling Speech Recognizers
Ya Zhao
Rui Xu
Xinchao Wang
Peng Hou
Haihong Tang
Xiuming Zhang
9
89
0
26 Nov 2019
Efficient Saliency Maps for Explainable AI
T. Nathan Mundhenk
Barry Y. Chen
Gerald Friedland
XAI
FAtt
21
73
0
26 Nov 2019
Analysis of Deep Networks for Monocular Depth Estimation Through Adversarial Attacks with Proposal of a Defense Method
Junjie Hu
Takayuki Okatani
AAML
MDE
35
15
0
20 Nov 2019
Signed Input Regularization
Saeid Asgari Taghanaki
Kumar Abhishek
Ghassan Hamarneh
AAML
10
1
0
16 Nov 2019
Streaming convolutional neural networks for end-to-end learning with multi-megapixel images
H. Pinckaers
Bram van Ginneken
G. Litjens
MedIm
27
94
0
11 Nov 2019
ERASER: A Benchmark to Evaluate Rationalized NLP Models
Jay DeYoung
Sarthak Jain
Nazneen Rajani
Eric P. Lehman
Caiming Xiong
R. Socher
Byron C. Wallace
50
627
0
08 Nov 2019
XDeep: An Interpretation Tool for Deep Neural Networks
Fan Yang
Zijian Zhang
Haofan Wang
Yuening Li
Xia Hu
XAI
HAI
9
3
0
04 Nov 2019
Leveraging Pretrained Image Classifiers for Language-Based Segmentation
David Golub
Ahmed El-Kishky
Roberto Martín-Martín
VLM
14
4
0
03 Nov 2019
Concept Saliency Maps to Visualize Relevant Features in Deep Generative Models
L. Brocki
N. C. Chung
FAtt
28
21
0
29 Oct 2019
Input-Cell Attention Reduces Vanishing Saliency of Recurrent Neural Networks
Aya Abdelsalam Ismail
Mohamed K. Gunady
L. Pessoa
H. C. Bravo
S. Feizi
AI4TS
25
50
0
27 Oct 2019
CXPlain: Causal Explanations for Model Interpretation under Uncertainty
Patrick Schwab
W. Karlen
FAtt
CML
40
205
0
27 Oct 2019
Seeing What a GAN Cannot Generate
David Bau
Jun-Yan Zhu
Jonas Wulff
William S. Peebles
Hendrik Strobelt
Bolei Zhou
Antonio Torralba
GAN
48
308
0
24 Oct 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
39
6,119
0
22 Oct 2019
Towards Best Practice in Explaining Neural Network Decisions with LRP
M. Kohlbrenner
Alexander Bauer
Shinichi Nakajima
Alexander Binder
Wojciech Samek
Sebastian Lapuschkin
22
148
0
22 Oct 2019
Contextual Prediction Difference Analysis for Explaining Individual Image Classifications
Jindong Gu
Volker Tresp
FAtt
26
8
0
21 Oct 2019
Semantics for Global and Local Interpretation of Deep Neural Networks
Jindong Gu
Volker Tresp
AI4CE
30
14
0
21 Oct 2019
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Ruth C. Fong
Mandela Patrick
Andrea Vedaldi
AAML
25
411
0
18 Oct 2019
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
122
297
0
17 Oct 2019
Do Explanations Reflect Decisions? A Machine-centric Strategy to Quantify the Performance of Explainability Algorithms
Z. Q. Lin
M. Shafiee
S. Bochkarev
Michael St. Jules
Xiao Yu Wang
A. Wong
FAtt
29
80
0
16 Oct 2019
Explaining image classifiers by removing input features using generative models
Chirag Agarwal
Anh Totti Nguyen
FAtt
28
15
0
09 Oct 2019
Interpretable Disentanglement of Neural Networks by Extracting Class-Specific Subnetwork
Yulong Wang
Xiaolin Hu
Hang Su
FAtt
14
1
0
07 Oct 2019
Testing and verification of neural-network-based safety-critical control software: A systematic literature review
Jin Zhang
Jingyue Li
25
47
0
05 Oct 2019
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks
Mehdi Neshat
Zifan Wang
Bradley Alexander
Fan Yang
Zijian Zhang
Sirui Ding
Markus Wagner
Xia Hu
FAtt
14
1,049
0
03 Oct 2019
Oblique Decision Trees from Derivatives of ReLU Networks
Guang-He Lee
Tommi Jaakkola
30
23
0
30 Sep 2019
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
32
436
0
26 Sep 2019
Robust Local Features for Improving the Generalization of Adversarial Training
Chuanbiao Song
Kun He
Jiadong Lin
Liwei Wang
J. Hopcroft
OOD
AAML
6
68
0
23 Sep 2019
AllenNLP Interpret: A Framework for Explaining Predictions of NLP Models
Eric Wallace
Jens Tuyls
Junlin Wang
Sanjay Subramanian
Matt Gardner
Sameer Singh
MILM
20
137
0
19 Sep 2019
Identifying Pediatric Vascular Anomalies With Deep Learning
Justin Chan
Sharat Raju
Randall Bly
J. Perkins
Shyamnath Gollakota
30
2
0
16 Sep 2019
X-ToM: Explaining with Theory-of-Mind for Gaining Justified Human Trust
Arjun Reddy Akula
Changsong Liu
Sari Saba-Sadiya
Hongjing Lu
S. Todorovic
J. Chai
Song-Chun Zhu
24
18
0
15 Sep 2019
NormLime: A New Feature Importance Metric for Explaining Deep Neural Networks
Isaac Ahern
Adam Noack
Luis Guzman-Nateras
Dejing Dou
Boyang Albert Li
Jun Huan
FAtt
11
39
0
10 Sep 2019
Understanding Bias in Machine Learning
Jindong Gu
Daniela Oelke
AI4CE
FaML
16
22
0
02 Sep 2019
Saliency Methods for Explaining Adversarial Attacks
Jindong Gu
Volker Tresp
FAtt
AAML
8
30
0
22 Aug 2019
Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks
Jörg Wagner
Jan M. Köhler
Tobias Gindele
Leon Hetzel
Thaddäus Wiedemer
Sven Behnke
AAML
FAtt
21
121
0
07 Aug 2019
Free-Lunch Saliency via Attention in Atari Agents
Dmitry Nikulin
A. Ianina
Vladimir Aliev
Sergey I. Nikolenko
FAtt
20
24
0
07 Aug 2019
Previous
1
2
3
...
20
21
22
23
24
Next